Необычные растения        28.07.2019   

Энергетические ресурсы

Возобновляемые), а также гидроэнергия (ресурсы , неисчерпаемые) и др. Запасы энергии атомного распада и ядерного синтеза являются физически неисчерпаемыми.

Вплоть до начала XX в. основным энергетическим ресурсом на планете была древесина. Затем ее значение начало падать, и стал заметен первый «энергетический переход» - к широкому использованию угля. Однако на смену ему пришли добыча и потребление иных видов топлива - нефти и , использование ядерной энергии.

«Эра нефти» дала толчок интенсивному развитию экономики, что потребовало, в свою очередь, увеличения производства и потребления ископаемого топлива. Увеличивается количество потребляемой на планете энергии (причем в последние десятилетия потребность в ней удваивается каждые 13-14 лет).

Согласно последним данным Мирового энергетического совета (МИРЭС), доказанные извлекаемые запасы органического топлива в мире составляют 1220 млрд тонн «условного» топлива (т у. т.), тогда как конечные (общие) извлекаемые ресурсы, оценены весьма условно - в 4,5 раза больше. То есть доказанные запасы органического топлива достаточны для удовлетворения ожидаемого роста мирового спроса на них в течение многих десятилетий.

Общемировые запасы органического топлива слагаются в первую очередь из запасов угля (до 60%), нефти и газа (около 27%), причем все пересчитывается в эквиваленте «условного топлива». В совокупном мировом их производстве (т. е. добыче) картина по удельному весу энергоносителей складывается иная - на уголь приходится более 30%, а на нефть и газ - более 67% от общей добычи топливных ресурсов.

В общемировых разведанных (т. е. конечных извлекаемых) запасах выделяют еще достоверные (извлекаемые при современном уровне развития техники). В середине 1990-х гг. достоверные запасы нефти в мире определялись в 130-140 млрд т или 200 млрд т у. т. (а общие разведанные - в три раза больше), природного газа - в 140 трлн м3 (или 150 млрд т у. т.).

При этом только на долю стран, входящих в экономическую группировку (Организацию стран-экспортеров нефти), приходится около 77% мировых запасов нефти и 41% мировых запасов природного газа.
В 1960 г. мировая добыча нефти и газового конденсата составляла 1053 млн т, а природного газа - 454 млрд м3; в 1994 г. ее объем увеличился до 3000 млн т и 2215 млрд м3 (соответственно).

Обеспеченность текущей добычи нефти достоверными запасами в настоящее время определяется в целом по миру в 45 лет. При этом в странах крупнейших производителях нефти обеспеченность запасами выше среднего уровня. Так, при нынешних темпах разработки запасов и добыче нефти в (которая является одним из основных экспортеров этого ценного сырья в мире) ее хватит примерно на 90 лет. Эксперты полагают, что резервы истощатся приблизительно через 140 лет, - через 70 лет и т. д.

Единой системы учета запасов угля и его классификации по видам не существует, поэтому и статистические данные, публикуемые в разных изданиях, существенно различаются. Так, например, мировые ресурсы (конечные извлекаемые) каменного и бурого угля в середине 1990-х гг. оценивались МИРЭС в 4850 млрд т у. т. А доказанные извлекаемые запасы угля и лигнита оценивались в 870 млрд ту. т. (т. е. немногим более 1 трлн метрических тонн).

Наиболее крупными запасами всех видов углей из зарубежных стран обладают , КНР, . Более 90% достоверных запасов (извлекаемых с использованием существующих технологий) сосредоточено в США (1/4), на территории республик (более 1/5), КНР (1/5) и ЮАР.

Само же понятие «энергетический кризис» можно определить как напряженное состояние, сложившееся в результате несовпадения между потребностями современного общества в энергии и запасами энергоресурсов, в т. ч. вследствие нерациональной структуры их потребления.

Основой энергетического хозяйства общества, источником и энергоносителей, и, следовательно, собственно энергии являются энергоресурсы, что, очевидно означает краткое название энергетических ресурсов. Энергетический ресурс-это носитель энергии, который используется в настоящее время или может быть использован в перспективе.

Все энергоресурсы делятся на первичные и вторичные. Первичные ресурсы есть результат природных процессов. Первичный энергоресурс- это энергоресурс, который не был подвергнут никакой переработке. Это энергия, которая содержится в природных источниках и может быть преобразована во вторичную (электрическую, тепловую, механическую) энергию.

К первичным энергоресурсам относится природное топливо, а также энергия солнца, ветра, водных ресурсов, биомассы и др.

Энергоресурсы можно также разделить на топливные и нетопливные. Первичные энергоресурсы могут быть возобновляемые и невозобновляемые.

Возобновляемые природные ресурсы это такие объекты, о восстановлении запаса которых заботится сама природа. Многие из них практически не зависят от того, в какой мере общество вовлекает их в хозяйственный оборот: солнечная энергия, гидроресурсы, ветер. Есть и другие - такие, использование которых ведет к уменьшению их запаса в краткосрочном и даже достаточно длительном времени. Пример - биомасса. Они, однако, могут рассматриваться как возобновляемые в длительной перспективе .

Невозобновляемые энергоресурсы это такие ресурсы, запас которых принципиально исчерпаем, - минеральное топливо, уран.

Если коротковолновое излучение связано с прямым отражением солнечной радиации, то длинноволновое излучение является результатом природных процессов и техногенной деятельности человека.

Вторичный энергоресурс (ВЭР) (внутренний энергоресурс) - это энергоресурс, получаемый в виде побочного продукта основного производства или являющийся таким продуктом (отходы производства). Это энергетический потенциал отходов продукции, побочных и промежуточных отходов, образующихся в технологических установках (системах), который не используется в самой установке, но может быть частично или полностью использован для энергоснабжения других установок. К вторичным энергетическим ресурсам относятся все переработанные иные или преобразованные виды топлива, а также побочная энергия производственных процессов или процессов в сфере потребления может быть утилизирована и использована вторично. Эта категория включает продукты нефтепереработки, облагороженное топливо, а также отработанный пар, отходы тепла, горячие газы. Следуя этой логике, ко вторичным энергоресурсам следует отнести также сберегаемую энергию.

Энергетические ресурсы – это разные виды природных ресурсов, необходимых для выработки электрической энергии.

К энергетическим ресурсам относятся: топливные (горючие) полезные ископаемые – природный газ, нефть, каменный и бурый уголь, горючие сланцы и торф; водная энергия рек, особенно горных рек; энергия радиоактивных химических элементов (уран, плутоний); солнечная энергия; ветровая энергия; энергия морских приливов и отливов; геотермальная энергия (внутреннее тепло Земли).

Россия обладает большими запасами энергетических ресурсов. Так, по запасам (48 трл тонн) и добыче природного газа Россия – на 1-м месте в мире (1/3 часть всех мировых запасов). По запасам нефти (1/7 часть всех мировых запасов) Россия входит в первую десятку стран мира, а по ее добыче занимает 1-3 места. По угольным запасам (1/8 часть всех мировых запасов) занимает 1-е место в мире, а по добыче – 3-е место. Как по запасам, так и по добыче урановых руд Россия входит в первую десятку стран мира.

В России на 1 человека потребляется около 4000 кг условного топлива (у. т.), что почти в 2 раза больше среднемирового уровня (2100 кг).

Энергоресурсы в России находятся в основном в ее азиатской части (3/4 всего угля, более 2/3 нефти и свыше 9/10 газа), в то время как население и производство сконцентрированы в европейской части. Такая диспропорция создает проблему добычи и транспортировки энергоресурсов с востока на запад России.

В России из всех энергетических ресурсов важнейшее значение имеют топливные ресурсы (газ – 50%, нефть – 29%, уголь – 14%). Первое место в России по запасам и добыче горючих полезных ископаемых занимает Западная Сибирь, в северной части которой добывают природный газ, в средней – нефть, а на юге (в Кузбассе) – каменный уголь. Затем следуют районы Урало-Поволжья (нефть, газ, бурый уголь), Северного Кавказа (каменный уголь Донбасса, нефть и газ кавказского краевого прогиба), северо-восточной части Русской равнины (Печорский каменноугольный бассейн и Ухтинская нефтегазоносная провинция в Республике Коми) и Восточной Сибири (бурый уголь Канско-Ачинского бассейна, каменный уголь Иркутского бассейна, Южно-Якутский каменноугольный бассейн – месторождение Нерюнгри и Вилюйская нефтегазоносная провинция в Якутии). Большое значение имеют шельфовые участки морей, омывающих территорию России, на которых обнаружено углеводородное сырье. Промышленная добыча нефти и газа ведется в Каспийском, Баренцевом, Карском и Охотском морях.

Россия занимает 2-е место в мире по гидроэнергетическому потенциалу (энергия рек) (2500 млрд кВт·ч), большая часть которого сосредоточена в азиатской части (85%). На долю Дальнего Востока приходится 53%, Восточной Сибири – 26% суммарного гидропотенциала России. Гидроэнергия Енисея и Ангары от всего гидроэнергетического потенциала – 28%.

Основные месторождения урановой руды расположены в Восточной Сибири (Краснокаменск в Читинской области) и в Северном районе.

Благоприятные перспективы использования солнечной энергии есть на Северном Кавказе, в Нижнем Поволжье и в Забайкалье, т. е. в районах, где в году много ясных солнечных дней.

К числу нетрадиционных источников энергии относится ветровая энергия. Самые ветряные районы в расположены вдоль береговой линии Северного Ледовитого океана и в Калининградской области.

На Кольском полуострове, в Кислой губе есть небольшая электростанция, работающая на энергии морских приливов и отливов. Большие возможности для строительства такого рода электрических станций имеются на побережье Охотского моря, где приливы достигают 18 м.

Источники геотермальной энергии есть в сейсмически активных зонах Земли. Это Камчатка (в Долине гейзеров работает небольшая электростанция) и Курильские острова.

Состав ТЭК России

ТЭК – это группа отраслей, занимающихся добычей и переработкой топлива, выработкой электроэнергии и доставкой ее потребителю. На развитие ТЭК затрачивается в РФ почти 30% средств, выделяемых государством для промышленности. ТЭК связан с другими межотраслевыми комплексами. Например, транспортный комплекс перевозит грузы для ТЭК, МК производит оборудование, машины. Основа экспорта России – нефть, газ, уголь в зарубежные страны – также приходятся на ТЭК, они составляют 40% от общего объема экспорта по стране.

ТЭК делится на:

топливную промышленность (Добыча и переработка угля, нефти, газа, сланца и торфа. Переработка топлива происходит у мест добычи, на путях грузопотоков, в районах потребления топлива.)

электроэнергетику (Производство электроэнергии на ТЭС (ТЭЦ, КЭС), ГЭС, АЭС. Передача электроэнергии по ЛЭП.)

В состав ТЭК входят нефте- и газопроводы, образующие единую сеть.

Энергетика – фундамент экономики, основа всего материального производства, ключевой элемент жизнеобеспечения страны и основа экспортной базы страны. Электроэнергетика – один из важнейших показателей уровня развития экономики и страны. Использование энергетических ресурсов – один из показателей уровня развития цивилизации. Без топлива и электроэнергии невозможно развитие любой отрасли экономики.

Энергетика является одним из факторов размещения экономики, т. к. ТЭК располагается вблизи крупных источников энергии (угольных и нефтяных бассейнов), мощных электростанций, у которых вырастают целые промышленные районы, создаются города и поселки, т. е. ТЭК играет районообразующую роль. Технический прогресс увеличивает расстояния, на которые передается топливо и электроэнергия. Это способствует развитию районов, бедных собственными источниками энергии, и более рациональному размещению экономики.

Роль электроэнергетики и обеспечивающей ее топливной промышленности в переводе всей экономики на современную техническую основу была определена в плане ГОЭЛРО в 1920 году, т. к. на использование электроэнергии базировалась вся техника. Поэтому масштабы, технологический уровень, темпы развития всех отраслей экономики зависят от ТЭК. Внедрение прогрессивной техники и технологий, связанных с НТП, в экономику требует энерговооружения труда рабочих, т. е. затраты всех видов энергии в расчете на одного занятого в производстве.

Россия – единственная страна в мире, которая практически полностью обеспечена собственными энергоресурсами, но размещены они по территории страны неравномерно. Свыше 90% запасов приходится на Сибирь и Восток. В Западной Сибири добывается 70% нефти и газа, 50% угля, а 75% энергии потребляется в европейской части страны. Это является основной экономико-географической проблемой энергетики России, т. к. требует перевозок на огромные расстояния.

Задачи для перспективного развития ТЭК:

увеличение инвестиций

внедрение новых технологий во все отрасли ТЭК, а также создание энергосберегающих технологий

пересмотр взаиморасчетов со странами СНГ, т. к. ТЭК обслуживает и страны СНГ

использование нетрадиционных источников энергии

Виды энергетических ресурсов:

Топливные (уголь, нефть, газ, сланцы, торф).

Гидроресурсы (сила падающей воды, приливов и отливов).

Атомные ресурсы – атомная энергия урана, радия, тория.

Нетрадиционные ресурсы (энергия солнца, ветра, геотермальная энергия).

Из суверенных государств СНГ:

Украина обеспечена углем и частично нефтью и газом

Казахстан – углем и нефтью (п-ов Магышлак и Тэнгизское месторождение)

Азербайджан – нефтью и газом

Туркменистан – газом и нефтью

Узбекистан – газом

В других государствах или совсем отсутствуют топливные ресурсы или есть небольшие месторождения (Молдавия – нет, Грузия – уголь, Армения – ГЭС, Киргизстан – уголь).

ТЭБ – топливно-энергетический баланс.

Развитие хозяйства связано с непрерывным ростом ТЭК при одновременном проведении жесткой политики энергосбережения. Чтобы учитывать пропорции в добыче различных видов топлива, производстве энергии и распределении их между различными потребителями, используют ТЭБ.

Соотношение добычи различных видов топлива и выработки энергии (приход) и использовании их в экономике (расход) называют ТЭБ . Поскольку при сгорании 1 кг топлива выделяется неодинаковое количество топлива, топливный баланс рассчитывают в единицах условного топлива. Для составления ТЭБ все виды топлива переводят в условные. Теплота сгорания 1 кг каменного угля определена в 2000 ккал, а тепловой коэффициент = 1. 1 кг – 2 Квт/час электроэнергии с учетом КПД электростанций.

В системе ТЭК от добычи горных ископаемых и производства электроэнергии на электростанциях до потребления топлива и электроэнергии коэффициент полезного использования ресурсов = 43%. Это значит, что 57% теряются ежегодно на электростанциях, при транспортировке. Поэтому необходимо принимать меры, направленные на сбережение топлива и электроэнергии.

Таким образом, с 50 по 93 год ТБ превратился из угольного в нефтегазовый. Начиная с 1990 года, перспективное значение принимает газ и уголь открытой добычи. В целом же, пока на долю нефти и газа приходится около 70% всей добычи и использования топлива.

3. Роль и значение ТЭК для экономики и внешней торговли Росссии

Проблемы и угрозы энергетической безопасности России

Соотношение, выражающее первый закон термодинамики, часто записывают в другой форме:

Q = ΔU + A .

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

Кельвина и Планка

Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

Клаузиуса

Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Циклы ЭУ

11.12.13 .

Теплопроводность - это молекулярный перенос теплоты между непосредственно соприкасающимися телами или частицами одного тела с различной температурой, при котором происходит обмен энергией движения структурных частиц (молекул, атомов, свободных электронов).

Конвекция осуществляется путем перемещения в пространстве не­равномерно нагретых объемов среды. При этом перенос теплоты не­разрывно связан с переносом самой среды.

Тепловое излучение характеризуется переносом энергии от одного тела к другому электромагнитными волнами.

В гидравлике различают следующие характеристики потока: живое сечение, смоченный периметр, гидравлический радиус, расход, средняя скорость.

Живым сечением потока называется поверхность (поперечное сечение), нормальная ко всем линиям тока, его пересекающим, и лежащая внутри потока жидкости. Площадь живого сечения обозначается буквой Й. Для элементарной струйки жидкости используют понятие живого сечения элементарной струйки (сечение струйки, перпендикулярное линиям тока), площадь которого обозначают через dЙ.

Смоченный периметр потока – линия, по которой жидкость соприкасается с поверхностями русла в данном живом сечении. Длина этой линии обозначается буквой c.

В напорных потоках смоченный периметр совпадает с геометрическим периметром, так как поток жидкости соприкасается со всеми твёрдыми стенками.

Гидравлическим радиусом R потока называется часто используемая в гидравлике величина, представляющая собой отношение площади живого сечения S к смоченному периметру c:

Закон (уравнение) Бернулли является (в простейших случаях ) следствием закона сохранения энергии для стационарного потока идеальной (то есть без внутреннего трения) несжимаемой жидкости:

Плотность жидкости,

Скорость потока,

Высота, на которой находится рассматриваемый элемент жидкости,

Давление в точке пространства, где расположен центр массы рассматриваемого элемента жидкости,

Ускорение свободного падения.

Уравнение Бернулли также может быть выведено как следствие уравнения Эйлера, выражающего баланс импульса для движущейся жидкости .

В научной литературе закон Бернулли, как правило, называется уравнением Бернулли (не следует путать с дифференциальным уравнением Бернулли),теоремой Бернулли или интегралом Бернулли .

Константа в правой части часто называется полным давлением и зависит, в общем случае, от линии тока.

Размерность всех слагаемых - единица энергии, приходящаяся на единицу объёма жидкости. Первое и второе слагаемое в интеграле Бернулли имеют смысл кинетической и потенциальной энергии, приходящейся на единицу объёма жидкости. Следует обратить внимание на то, что третье слагаемое по своему происхождению является работой сил давления (см. приводимый в приложении вывод уравнения Бернулли) и не представляет собой запаса какого-либо специального вида энергии («энергии давления» ).

Соотношение, близкое к приведенному выше, было получено в 1738 г. Даниилом Бернулли, с именем которого обычно связывают интеграл Бернулли . В современном виде интеграл был получен Иоганном Бернулли около 1740 года.

Для горизонтальной трубы высота постоянна и уравнение Бернулли принимает вид: .

Эта форма уравнения Бернулли может быть получена путём интегрирования уравнения Эйлера для стационарного одномерного потока жидкости, при постоянной плотности : .

Согласно закону Бернулли, полное давление в установившемся потоке жидкости остается постоянным вдоль этого потока.

Полное давление состоит из весового , статического и динамического давлений.

Из закона Бернулли следует, что при уменьшении сечения потока, из-за возрастания скорости, то есть динамического давления, статическое давление падает. Это является основной причиной эффекта Магнуса. Закон Бернулли справедлив и для ламинарныхпотоков газа. Явление понижения давления при увеличении скорости потока лежит в основе работы различного рода расходомеров (например труба Вентури), водо- и пароструйных насосов. А последовательное применение закона Бернулли привело к появлению технической гидромеханической дисциплины - гидравлики.

Закон Бернулли справедлив в чистом виде только для жидкостей, вязкость которых равна нулю. Для приближённого описания течений реальных жидкостей в технической гидромеханике (гидравлике) используют интеграл Бернулли с добавлением слагаемых, учитывающих потери на местных и распределенных сопротивлениях.

Цепна́я я́дерная реа́кция - последовательность единичных ядерных реакций, каждая из которых вызывается частицей, появившейся как продукт реакции на предыдущем шаге последовательности. Примером цепной ядерной реакции является цепная реакция деления ядер тяжёлых элементов, при которой основное число актов деления инициируетсянейтронами

Полученными при делении ядер в предыдущем поколении.

Цепные реакции широко распространены среди химических реакций, где роль частиц с неиспользованными связями выполняют свободные атомы илирадикалы . Механизм цепной реакции при ядерных превращениях могут обеспечить нейтроны , не имеющие кулоновского барьера и возбуждающие ядра при поглощении. Появление в среде необходимой частицы вызывает цепь следующих, одна за другой реакций, которая продолжается до обрыва цепи вследствие потери частицы-носителя реакции. Основных причин потерь две: поглощение частицы без испускания вторичной и уход частицы за пределы объёма вещества, поддерживающего цепной процесс. Если в каждом акте реакции появляется только одна частица-носитель, то цепная реакция называется неразветвлённой . Неразветвлённая цепная реакция не может привести к энерговыделению в больших масштабах.

При работе реактора в тепловыводящих элементах (твэлах), а также во всех его конструктивных элементах в различных количествах выделяется теплота. Это связано с торможением осколков деления, бета- и гамма- излучением осколков и ядер, испытывающих взаимодействие с нейронами, и, наконец, с замедлением быстрых нейронов. Осколки при делении ядра топлива классифицируются по скоростям, соответствующим температуре в сотни миллиардов градусов.

Действительно, Е=mu2=3RT, где Е - кинетическая энергия осколков, МэВ; R=1,38*10-23 Дж/К - постоянная Больцмана. Учитывая, что 1 МэВ=1,6*10-13 Дж, получим 1,6*10-6 Е=2,07*10-16 Т, Т=7,7*109 Е. Наиболее вероятные значения энергии для осколков деления равны 97 МэВ для легкого осколка и 65 МэВ для тяжелого. Тогда соответствующая температура для легкого осколка равна 7,5*1011 К, тяжелого – 5*1011 К. Хотя достижимая в ядерном реакторе температура теоретически почти неограниченна, практически ограничения определяются предельно допустимой температурой конструкционных материалов и тепловыделяющих элементов.

Особенность ядерного реактора состоит в том, что 94% энергии деления превращается в теплоту мгновенно, т.е. за время, в течение которого мощность реактора или плотность материалов в нем не успевает заметно измениться. Поэтому при изменении мощности реактора тепловыделение следует без запаздывания за процессом деления топлива. Однако при выключении реактора, когда скорость деления уменьшается более чем в десятки раз, в нем остаются источники запаздывающего тепловыделения (гамма- и бета-излучение продуктов деления), которые становятся преобладающими.

Мощность ядерного реактора пропорциональна плотности потока нейронов в нем, поэтому теоретически достижима любая мощность. Практически же предельная мощность определяется скоростью отвода теплоты, выделяемой в реакторе. Удельный теплосъем в современных энергетических реакторах составляет 102-103 МВт/м3. От реактора теплота отводится циркулирующим через него теплоносителем. Характерной особенностью реактора является остаточное тепловыделение после прекращения реакции деления, что требует отвода теплоты в течение длительного времени после остановки реактора. Хотя мощность остаточного тепловыделения значительно меньше номинальной, циркуляция теплоносителя через реактор должна обеспечиваться очень надежно, так как остаточное тепловыделение регулировать нельзя. Удаление теплоносителя из работавшего некоторое время реактора категорически запрещено во избежание перегрева и повреждения тепловыделяющих элементов.

Энергетический ядерный реактор - это устройство, в котором осуществляется управляемая цепная реакция деления ядер тяжелых элементов, а выделяющаяся при этом тепловая энергия отводится теплоносителем. Главным элементом ядерного реактора является активная зона. В нем размещается ядерное топливо и осуществляется цепная реакция деления. Активная зона представляет собой совокупность определенным образом размещенных тепловыделяющих элементов, содержащих ядерное топливо. В реакторах на тепловых нейтронах используется замедлитель. Через активную зону прокачивается теплоноситель, охлаждающий тепловыделяющие элементы. В некоторых типах реакторов роль замедлителя и теплоносителя выполняет одно и то же вещество, например обычная или тяжелая вода. Для управления работой реактора в активную зону вводятся регулирующие стержни из материалов, имеющих большое сечение поглощения нейтронов. Активная зона энергетических реакторов окружена отражателем нейтронов - слоем материала замедлителя для уменьшения утечки нейтронов из активной зоны. Кроме того, благодаря отражателю происходит выравнивание нейтронной плотности и энерговыделения по объему активной зоны, что позволяет при данных размерах зоны получить большую мощность, добиться более равномерного выгорания топлива, увеличить продолжительность работы реактора без перегрузки топлива и упростить систему теплоотвода. Отражатель нагревается за счет энергии замедляющихся и поглощаемых нейтронов и гамма-квантов, поэтому предусматривается его охлаждение. Активная зона, отражатель и другие элементы размещаются в герметичном корпусе или кожухе, обычно окруженном биологической защитой.

1. КЛАССИФИКАЦИЯ ЯДЕРНЫХ РЕАКТОРОВ

На практике перевод ядерной энергии в тепловую (и в электрическую) проводят на устройствах, называемых ядерными реакторами. Ядерный (атомный) реактор - устройство, в активной зоне которого осуществляется контролируемая самоподдерживающаяся цепная реакция деления ядер некоторых тяжелых элементов под действием нейтронов. Эта реакция представляет собой самоподдерживающийся процесс деления ядер изотопов урана (или делящихся изотопов других элементов) под действием нейтронов, которые благодаря отсутствию электрического заряда легко проникают в атомные ядра. Выделяют четыре группы ядерных реакторов : 1. Ядерные реакторы, использующиеся в качестве источников электрической и тепловой энергии (энергетические); 2. Ядерные реакторы, использующиеся для получения различных видов излучения (в том числе- исследовательские); 3. Промышленные реакторы военного назначения, производящие оружейный плутоний; 4. Ядерные реакторы – размножители, наработчики новых радионуклидов, в том числе – нового ядерного топлива, трансплутониевых элементов, энергетического плутония и т.п. (реакторы – конвертеры и реакторы – бридеры).

Основные типы энергетических ядерных реакторов: -электрические ядерные реакторы АЭС (используются для выработки тепловой энергии, преобразующейся с помощью турбогенераторов в электрическую) -элекроэнергетические (термоэлектрические или термоэмиссионные) ядерные реакторы (с безмашинным преобразованием тепловой энергии в электрическую); -высокотемпературные теплоэнергетические ядерные реакторы для АСТ (производят высокопотенциальную тепловую энергию, непосредственно используемую в химической или металлургической промышленности для осуществления различных химических реакций, опреснения морской воды или получения энергоносителей, например, водорода); -теплоэнергетические ядерные реакторы (производят тепловую энергию на атомных станциях теплоснабжения, предназначены для промышленной и бытовой теплофикации) К энергетическим реакторам относятся также судовые, или транспортные ядерные реакторы; реакторы ядерных ракетных двигателей; двухцелевые электроэнергетические реакторы - размножители, вырабатывающие тепловую энергию и ядерные материалы, которые могут быть использованы для производства нового ядерного топлива; термоэмиссионные реакторы-преобразователи космических ядерно- энергетических установок (в том числе – генерирующих лазерное излучение). В последние годы проводятся работы созданию лазеров с ядерным возбуждением. Изучаются перспективы использованию импульсных ядерных реакторов для возбуждения рентгеновских и гамма-лазеров. Основные типы ядерных реакторов для получения различных видов излучения: -исследовательские ядерные реакторы (служат источниками нейтронного и гамма-излучения для научных и технических целей, в частности облучения реакторных материалов - материаловедческие реакторы -промышленные ядерные реакторы (используются для производства плутония и других делящихся радиоактивных изотопов) -облучательные ядерные реакторы (предназначены для обработки материалов нейтронным или гамма- излучением в целях улучшения их свойств) -хемоядерные реакторы, использующие излучение для ускорения химических реакций -реакторы-источники нейтронов для активационного анализа нуклидного состава материалов -реакторы для биомедицинских целей и обработки пищевых продуктов -импульсные реакторы-гамма-лазеры, в которых энергия излучения, включая энергию осколков деления, используется для накачки энергии в активное вещество лазеров. Замечание. Часто реактор совмещает несколько функций. Например, исследовательский реактор СМ, дающий самую большую в мире плотность потоков тепловых нейтронов, позволяет решать проблемы ядерной физики и материаловедения, и одновременно нарабатывать тяжёлые актиниды (вплоть до эйнштейния), в том числе – военного назначения. Ядерные реакторы подразделяются на различные типы не только по назначению, но и по физическим, техническим и эксплуатационным признакам. По физическим признакам различают реакторы на тепловых и быстрых нейтронах; реакторы уранового, плутониевого или ториевого цикла; реакторы – размножители (бридеры). Техническая классификация проводится по признакам: -вид теплоносителя и замедлителя (водяные тепловые ядерные реакторы с легководным, тяжеловодным или графитовым замедлителем, реакторы на быстрых нейтронах с натриевым или гелиевым теплоносителем, реакторы с органическим теплоносителем и замедлителем); -агрегатное состояние водного теплоносителя (водо-водяные энергетические реакторы с водой под давлением, газовые реакторы, пароохлаждаемые реакторы на быстрых нейтронах); -элемент, в котором создается давление теплоносителя (корпусные, канальные, канально-корпусные ядерные реакторы); -число контуров теплоносителя (реакторы однокорпусные, с прямым паро- или газотурбинным циклом, двухкорпусные с парогенератором и трехкорпусные - с промежуточным контуром, отделяющим первый реакторный контур от паросилового контура); -структура и форма активной зоны (гетерогенные и гомогенные ядерные реакторы с активными зонами в форме цилиндра, параллелепипеда или сферы); -время действия (ядерные реакторы непрерывного действия, импульсные, прерывистого действия). Реакторы классифицируются по типу используемого теплоносителя. Упомянем основные из них: Реактор с водой под давлением. В таких реакторах замедлителем и теплоносителем служит вода. Нагретая вода перекачивается под давлением в теплообменник, где тепло передается воде второго контура, в котором вырабатывается пар, вращающий турбину. Кипящий реактор. В таком реакторе кипение воды происходит непосредственно в активной зоне реактора и образующийся пар поступает в турбину. В большинстве кипящих реакторов вода используется и как замедлитель, но иногда применяется графитовый замедлитель. Реактор с жидкометаллическим охлаждением. В таком реакторе для переноса теплоты, выделяющейся в процессе деления в реакторе, используется жидкий металл, циркулирующий

20.

Преобразование энергии электростанциями может быть разных типов, как гидравлическими, так и тепловыми (в их число входят и атомные), это зависит от рода их первичного двигателя.

ТЭС (Тепловые Электрические Станции).

ТЭС делятся на станции с паровыми турбинами, газовыми турбинами и двигателями с внутренним сгоранием. Самыми распространенными являются паровые ТЭС.

На сегодняшний день 80% всего электричества производится на тепловых станциях. Их работа осуществляется на не возобновляемых ресурсах: нефть, торф, уголь, газ.

Турбины, соединенные с генераторами, приводятся в движение при помощи раскаленного пара воды. Если весь пар идет на вращение турбин, тогда станцию именуют кондиционерной или ГРЭС, такие станции располагаются у водоемов и мест добычи топлива, их мощность 22-750 кВ.
ТЭС предназначаются для снабжения предприятий и городов тепловой и электрической энергией.

АЭС (Атомные Электрические Станции).

Все большее внимание уделяется возведению Атомных электрических станций, так как они помогают сэкономить большое количество органических ресурсов для добычи электроэнергии.

«Сердцем» АЭС являются несколько реакторов, в которых происходит деление ядер урана, за счет этого получается тепловая энергия. Реактор состоит из отражателей, системы управления, системы охлаждения, активной зоны, системы контроля и регулирования корпуса.
А рабочую зону помещаются стержни урана или плутония, в специальной герметичной оболочке. В таких стержнях и происходят реакции деления ядер, при которых и выделяются большие количества теплоты.

Такие стержни называются твэлами (тепловыделяющими элементами). Количество таких элементов в зоне активности может достигать пару десятков тысяч.

Зона активности окружается отражателями, которые не позволяют нейтронам покинуть реактор. Так же реактор окружен специальной биологической защитой, в виде слоя бетона, толщина которого не позволяет радиации просочиться.

Такие электростанции экономят не возобновляемое топливо, для сравнения: 1 кг U-235 (уран), эквивалентен 2900 тонн угля.

ГЭС (Гидравлические Электрические Станции).

ГЭС возводятся на водопадах и река, чтобы использовать энергию от потоков воды. Это является возобновляемым источником энергии. Установленная мощность таких станций больше чем 20% общем мощности. Запуск агрегатов ГЭС не занимает более 30с времени, именно по этой причине резерв мощности осуществляется агрегатами станции. КПД ГЭС равен 85-90%.

Солнечные Электростанции.

Из-за того, что поток солнечных лучей у поверхности Земли довольно низок, что затрудняет проводимые работы по добыче электричества из энергии солнца, довольно сложный процесс. Благодаря современному оборудованию удалось достичь от 12 до 20% КПД. В Крыму такая станция вырабатывает 5 МВт.

Ветровые электростанции.

Ветрами богата прибрежная часть Северного Ледовитого Океана и его восточные районы. В этих частях могут быть установлены установки для использования силы ветра, мощность этих установок 300 кВт.

Состав и компоновка сооружений ГЭС определяются схемой концентрации напора. Как уже говорилось, существует основные схемы создания напора: плотинная и деривационная. Гидроэлектростанции, сооруженные по плотинной схеме, делятся, в свою очередь, на два типа: русловые и приплотинные. Деривационные ГЭС также делятся на два типа: с безнапорной и с напорной деривацией.

Основными сооружениями ГЭС, выполненными по плотинной схеме, являются плотины и здание ГЭС. При напоре до 25 – 30 м здание станции размещается в одном створе с плотиной и воспринимает напор. Такие гидроэлектростанции называются русловыми. При комплексном использовании водотока в состав гидроузла кроме плотины и здания ГЭС включаются сооружения, предназначенные для удовлетворения специфических нужд каждого участка комплекса (шлюз для водного транспорта, водозаборные сооружения для орошения и водоснабжения, рыбоходы и т.п.).

При напоре, превышающем 25–30 м, здание ГЭС размещается за плотиной в нижнем бьефе и уже не воспринимает напор. Такие ГЭС носят название приплотинных. При комплексном назначении гидроузла в него так же, как и в предыдущем случае, включаются сооружения неэнергетических участников комплекса. Поскольку в этой схеме здание ГЭС не воспринимает напор, для подачи воды к турбинам ГЭС необходимы водоприемники и турбинные трубопроводы. Компоновка гидроузлов с приплотинными ГЭС в значительной степени зависит от типа плотины и создаваемого ею напора.

Если в рассматриваемой схеме плотина ГЭС сооружена не из бетона, а из грунта или каменной наброски, то водоприемник, турбинные водоводы (трубопроводы) и водосбросы устанавливаются не совмещенными с плотиной.

Сооружения деривационных ГЭС располагаются в двух узлах – головном и станционном, соединенных между собой деривацией.

Головной узел ГЭС с безнапорной деривацией (рис. 6.5) состоит из плотины с водосбором и поверхностного водоприемника, а в случае надобности в нем дополнительно размещаются отстойник, грязеспуск, шугосброс и водоприемникдля неэнергетических потребителей воды.

Безнапорная деривация устраивается в виде открытого канала. Там, где деривационный канал пересекается с поперечно направленными оврагами, долинами, ручьями и реками, создаются сооружения для пропуска воды под или над каналами – дюкеры, трубы под каналами, лотки над каналом, а иногда и крупные мосты – акведуки для пересечения каналом широкой поперечной долины. У станционного узла канал заканчивается и переходит в напорный бассейн, откуда вода по турбинным трубопроводам поступает к турбинам, расположенным в здании ГЭС, и далее в отводящий канал и реку.

Каскады гидроэлектростанций и водохранилищ

Несколько ГЭС, последователь­но расположенных на одном водо­токе, образуют каскад, в котором могут быть плотинные и деривационные ГЭС. Проектирование и осуществление каскадов ГЭС имеет целью возможно более полное использование падения реки и ее стока в интересах всего народного хозяйства. При этом стремятся за счет создания водохранилищ наилучшим образом зарегулировать сток рек.

Местоположение каждого гидроузла, его напор, объем образуемо­го им водохранилища и т. п. выбираются на основе тщательного изу­чения природных условий и всестороннего технико-экономического анализа. Для того чтобы использовать возможно больший сток на дан­ной установке, створ плотины стремятся расположить ниже крупного притока, а для уменьшения ущерба от затопления створ плотины выбирают выше крупных городов. При выборе створа плотины часто решающее значение имеют топографические и геологические ус­ловия

При сооружении каскада ГЭС обычно оказывается целесообраз­ным некоторый подпор вышерасположенной ступени, благодаря чему падение реки используется более полно и может производиться глубо­кое суточное регулирование мощности ГЭС без существенных колеба­ний уровня НБ.

На рис. 7 приведена схема Волжско-Камского каскада ГЭС и водохранилищ. Река Волга имеет длину 3690 км и общее падение 250 м. Ступенчатой линией показаны проектные уровни воды после осуществления всей схемы реконструкции Волги.

Каскады ГЭС построены на многих реках - Енисее, Ангаре, Иртыше, Каме, Свири, Вуоксе, Днепре, Сырдарье, Нарыне, Чирчике, Куре, Риони, Ингури, Сулаке и др.

3. Комплексное использование водных ресурсов

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11

Содержание статьи

ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ. На протяжении тысячелетий основными видами используемой человеком энергии были химическая энергия древесины, потенциальная энергия воды на плотинах, кинетическая энергия ветра и лучистая энергия солнечного света. Но в 19 в. главными источниками энергии стали ископаемые топлива: каменный уголь, нефть и природный газ.

В связи с быстрым ростом потребления энергии возникли многочисленные проблемы и встал вопрос о будущих источниках энергии. Достигнуты успехи в области энергосбережения. В последнее время ведутся поиски более чистых видов энергии, таких, как солнечная, геотермальная, энергия ветра и энергия термоядерного синтеза.

Потребление энергии всегда было прямо связано с состоянием экономики. Увеличение валового национального продукта (ВНП) сопровождалось увеличением потребления энергии. Однако энергоемкость ВНП (отношение использованной энергии к ВНП) в промышленно развитых странах постоянно снижается, а в развивающихся – возрастает.

ИСКОПАЕМЫЕ ТОПЛИВА

Существуют три основных вида ископаемых энергоносителей: уголь, нефть и природный газ. Примерные значения теплоты сгорания этих видов топлива, а также разведанные и промышленные (т.е. допускающие экономически рентабельную разработку при данном уровне техники) запасы нефти представлены в табл. 1 и 2.

Запасы нефти и природного газа.

Трудно точно рассчитать, на сколько лет еще хватит запасов нефти. Если существующие тенденции сохранятся, то годовое потребление нефти в мире к 2018 достигнет 3 млрд. т. Даже допуская, что промышленные запасы существенно возрастут, геологи приходят к выводу, что к 2030 будет исчерпано 80% разведанных мировых запасов нефти.

Запасы угля.

Запасы угля оценить легче (см . табл. 3). Три четверти мировых его запасов, составляющих по приближенной оценке 10 трлн. т, приходятся на страны бывшего СССР, США и КНР.

Таблица 3. МИРОВЫЕ ЗАПАСЫ КАМЕННОГО УГЛЯ
Таблица 3. МИРОВЫЕ ЗАПАСЫ КАМЕННОГО УГЛЯ (ОРИЕНТИРОВОЧНЫЕ ДАННЫЕ)
Регион

Млрд. т

Страны СНГ
США
Китай
Западная Европа
Океания
Африка
Азия (без стран СНГ и Китая)
Канада
Латинская Америка
Всего:

Хотя угля на Земле гораздо больше, чем нефти и природного газа, его запасы не безграничны. В 1990-х годах мировое потребление угля составляло более 2,3 млрд. т в год. В отличие от потребления нефти, потребление угля существенно увеличилось не только в развивающихся, но и в промышленно развитых странах. По существующим прогнозам, запасов угля должно хватить еще на 420 лет. Но если потребление будет расти нынешними темпами, то его запасов не хватит и на 200 лет.

ЯДЕРНАЯ ЭНЕРГИЯ

Запасы урана.

В 1995 более или менее достоверные мировые запасы урана оценивались в 1,5 млн. т. Дополнительные ресурсы оценивались в 0,9 млн. т. Крупнейшие из известных источников урана находятся в Северной Америке, Австралии, Бразилии и Южной Африке. Считается, что большими количествами урана обладают страны бывшего Советского Союза.

В 1995 число действующих ядерных реакторов во всем мире достигло 400 (в 1970 – только 66) и их полная мощность составила около 300 000 МВт. В США планируется и ведется строительство лишь 55 новых АЭС, а проекты 113 других аннулированы.

Реактор-размножитель.

Ядерный реактор-размножитель обладает чудесной способностью, вырабатывая энергию, в то же время производить еще и новое ядерное топливо. К тому же он работает на более распространенном изотопе урана 238 U (преобразуя его в делящийся материал плутоний). Считается, что при использовании реакторов-размножителей запасов урана хватит не менее чем на 6000 лет. По-видимому, это ценная альтернатива ядерным реакторам нынешнего поколения.

Безопасность ядерных реакторов.

Даже самые строгие критики атомной энергетики не могут не признать, что в легководных ядерных реакторах ядерный взрыв невозможен. Однако существуют другие четыре проблемы: возможность (взрывного или приводящего к утечке) разрушения защитной оболочки реактора, радиоактивные выбросы (низкого уровня) в атмосферу, транспортировка радиоактивных материалов и длительное хранение радиоактивных отходов. Если активную зону реактора оставить без охлаждающей воды, то она быстро расплавится. Это может привести к взрыву пара и выбросу в атмосферу радиоактивных «осколков» ядерного деления. Правда, разработана система аварийного охлаждения активной зоны реактора, которая предотвращает расплавление, заливая активную зону водой в случае аварии в первом контуре реактора.

Однако действие такой системы исследовалось в основном путем компьютерного моделирования. Обстоятельная проверка некоторых результатов моделирования проводилась на небольших опытных реакторах в Японии, Германии и США. Самым слабым местом используемых компьютерных программ являются, по-видимому, предположения о том, что отказать может не более одного узла сразу и что ситуацию не усложнит ошибка оператора. Оба эти предположения оказались неверными в самой серьезной из аварий, происшедших на АЭС в США.

28 мая 1979 в Три-Майл-Айленде близ Гаррисберга (шт. Пенсильвания) отказ оборудования и ошибка оператора привели к выходу из строя реактора с частичным расплавлением его активной зоны. Небольшое количество радиоактивных веществ было выброшено в атмосферу. Через семь лет после аварии Министерству энергетики США удалось извлечь разрушенную сборку активной зоны для обследования. Ущерб, нанесенный жизням людей и их собственности за пределами территории АЭС, был незначителен, но из-за этой аварии у общественности сложилось неблагоприятное мнение о безопасности реактора.

В апреле 1986 произошла гораздо более серьезная авария на Чернобыльской АЭС в Советском Союзе. Во время плановой остановки одного из четырех графитовых кипящих реакторов неожиданно резко повысилась выходная мощность и в реакторе образовался газообразный водород. Взрыв водорода разрушил здание реактора. Частично расплавилась активная зона, загорелся графитовый замедлитель, и произошел выброс огромных количеств радиоактивных веществ в атмосферу. Два работника погибли при взрыве, не менее 30 других вскоре умерли от лучевой болезни. До 1000 человек были госпитализированы из-за облучения. Около 100 000 человек в Киевской, Гомельской и Черниговской областях получили большие дозы излучения. Оказались сильно загрязненными почва и вода в регионе, в том числе огромное Киевское водохранилище. После того как пожар был погашен, поврежденный реактор был закрыт «саркофагом» из бетона, свинца и песка. Радиоактивность, связанная с этой аварией, была зарегистрирована даже в Канаде и Японии. Уровень радиоактивности, измеренный в Париже, был, как утверждают, сравним с радиоактивным фоном в 1963, до подписания Соединенными Штатами и Советским Союзом договора о прекращении испытаний ядерного оружия в атмосфере.

Деление ядер – не идеальное решение проблемы энергоресурсов. Более перспективной в экологическом плане представляется энергия термоядерного синтеза.

Энергия термоядерного синтеза.

Такую энергию можно получать за счет образования тяжелых ядер из более легких. Этот процесс называется реакцией ядерного синтеза. Как и при делении ядер, небольшая доля массы преобразуется в большое количество энергии. Энергия, излучаемая Солнцем, возникает в результате образования ядер гелия из сливающихся ядер водорода. На Земле ученые ищут способ осуществления управляемого ядерного синтеза с использованием небольших, поддающихся контролю масс ядерного материала.

Дейтерием D и тритием T называются тяжелые изотопы водорода 2 H и 3 H. Атомы дейтерия и трития необходимо нагреть до температуры, при которой они полностью диссоциировались бы на электроны и «голые» ядра. Такая смесь несвязанных электронов и ядер называется плазмой. Для того чтобы создать реактор термоядерного синтеза, нужно выполнить три условия. Во-первых, плазма должна быть достаточно сильно нагрета, чтобы ядра могли сблизиться на расстояние, необходимое для взаимодействия. Для дейтерий-тритиевого синтеза необходимы очень высокие температуры. Во-вторых, плазма должна быть достаточно плотной, чтобы в одну секунду происходило много реакций. И в-третьих, плазма должна достаточно долго удерживаться от разлетания, чтобы могло выделиться значительное количество энергии.

Исследования в области управляемого термоядерного синтеза ведутся в двух основных направлениях. Одно из них – удержание плазмы магнитным полем, как бы в магнитной бутылке. Второе (метод инерционного удержания плазмы) – очень быстрое нагревание лучом мощного лазера (см . ЛАЗЕР) дейтерий-тритиевой крупинки (таблетки), вызывающее реакцию термоядерного синтеза в форме управляемого взрыва.

Энергия ядер дейтерия, содержащихся в 1 м 3 воды, равна примерно 3ґ 10 12 Дж. Иначе говоря, 1 м 3 морской воды в принципе может дать столько же энергии, как и 200 т нефти-сырца. Таким образом, мировой океан представляет собой практически неограниченный источник энергии.

В настоящее время ни методом магнитного, ни методом инерционного удержания плазмы еще не удалось создать условия, необходимые для термоядерного синтеза. Хотя наука неуклонно движется по пути все более глубокого понимания основных принципов реализации обоих методов, пока нет оснований полагать, что термоядерный синтез начнет давать реальный вклад в энергетику ранее 2010.

АЛЬТЕРНАТИВНЫЕ ИСТОЧНИКИ ЭНЕРГИИ

В последнее время исследуется ряд альтернативных источников энергии. Наиболее перспективным из них представляется солнечная энергия.

Солнечная энергия.

У солнечной энергии два основных преимущества. Во-первых, ее много и она относится к возобновляемым энергоресурсам: длительность существования Солнца оценивается приблизительно в 5 млрд. лет. Во-вторых, ее использование не влечет за собой нежелательных экологических последствий.

Однако использованию солнечной энергии мешает ряд трудностей. Хотя полное количество этой энергии огромно, она неконтролируемо рассеивается. Чтобы получать большие количества энергии, требуются коллекторные поверхности большой площади. Кроме того, возникает проблема нестабильности энергоснабжения: солнце не всегда светит. Даже в пустынях, где преобладает безоблачная погода, день сменяется ночью. Следовательно, необходимы накопители солнечной энергии. И наконец, многие виды применения солнечной энергии еще как следует не апробированы, и их экономическая рентабельность не доказана.

Можно указать три основных направления использования солнечной энергии: для отопления (в том числе горячего водоснабжения) и кондиционирования воздуха, для прямого преобразования в электроэнергию посредством солнечных фотоэлектрических преобразователей и для крупномасштабного производства электроэнергии на основе теплового цикла.

Геотермальная энергия.

Геотермальная энергия, т.е. теплота недр Земли, уже используется в ряде стран, например в Исландии, России, Италии и Новой Зеландии. Земная кора толщиной 32–35 км значительно тоньше лежащего под ней слоя – мантии, простирающейся примерно на 2900 км к горячему жидкому ядру. Мантия является источником богатых газами огненно-жидких пород (магмы), которые извергаются действующими вулканами. Тепло выделяется в основном вследствие радиоактивного распада веществ в земном ядре. Температура и количество этого тепла столь велики, что оно вызывает плавление пород мантии. Горячие породы могут создавать тепловые «мешки» под поверхностью, в контакте с которыми вода нагревается и даже превращается в пар. Поскольку такие «мешки» обычно герметичны, горячая вода и пар часто оказываются под большим давлением, а температура этих сред превышает точку кипения воды на поверхности земли. Наибольшие геотермальные ресурсы сосредоточены в вулканических зонах по границам корковых плит.

Основным недостатком геотермальной энергии является то, что ее ресурсы локализованы и ограничены, если изыскания не показывают наличия значительных залежей горячей породы или возможности бурения скважин до мантии. Существенного вклада этого ресурса в энергетику можно ожидать только в локальных географических зонах.

Гидроэнергия.

Гидроэнергетика дает почти треть электроэнергии, используемой во всем мире. Норвегия, где электроэнергии на душу населения больше, чем где-либо еще, живет почти исключительно гидроэнергией.

На гидроэлектростанциях (ГЭС) и гидроаккумулирующих электростанциях (ГАЭС) используется потенциальная энергия воды, накапливаемой с помощью плотин. У основания плотины расположены гидротурбины, приводимые во вращение водой (которая подводится к ним под нормальным давлением) и вращающие роторы генераторов электрического тока.

Существуют очень крупные ГЭС. Широко известны две большие ГЭС в России: Красноярская (6000 МВт) и Братская (4100 МВт). Самая крупная ГЭС в США – Грэнд-Кули полной мощностью 6480 МВт. В 1995 на гидроэнергетику приходилось около 7% электроэнергии, вырабатываемой в мире.

Гидроэнергия – один из самых дешевых и самых чистых энергоресурсов. Он возобновляем в том смысле, что водохранилища пополняются приточной речной и дождевой водой. Остается под вопросом целесообразность строительства ГЭС на равнинах.

Приливная энергетика.

Существуют приливные электростанции, в которых используется перепад уровней воды, образующийся во время прилива и отлива. Для этого отделяют прибрежный бассейн невысокой плотиной, которая задерживает приливную воду при отливе. Затем воду выпускают, и она вращает гидротурбины.

Приливные электростанции могут быть ценным энергетическим подспорьем местного характера, но на Земле не так много подходящих мест для их строительства, чтобы они могли изменить общую энергетическую ситуацию.

Ветроэнергетика.

Исследования, проведенные Национальной научной организацией США и НАСА, показали, что в США значительные количества ветроэнергии можно получать в районе Великих озер, на Восточном побережье и особенно на цепочке Алеутских островов. Максимальная расчетная мощность ветровых электростанций в этих областях может обеспечить 12% потребности США в электроэнергии в 2000. Крупнейшие ветроэлектростанции США расположены под Голдендейлом в штате Вашингтон, где каждый из трех генераторов (установленных на башнях высотой 60 м, с диаметром ветрового колеса, равным 90 м) дает 2,5 МВт электроэнергии. Проектируются системы на 4,0 МВт.

Твердые отходы и биомасса.

Примерно половину твердых отходов составляет вода. Легко собрать можно лишь 15% мусора. Самое большее, что могут дать твердые отходы, – это энергию, соответствующую примерно 3% потребляемой нефти и 6% природного газа. Следовательно, без радикальных улучшений в организации сбора твердых отходов они вряд ли дадут большой вклад в производство электроэнергии.

На биомассу – древесину и органические отходы – приходится около 14% полного потребления энергии в мире. Биомасса – обычное бытовое топливо во многих развивающихся странах.

Были предложения выращивать растения (в том числе и лес) как источник энергии. Быстрорастущие водяные растения способны давать до 190 т сухого продукта с гектара в год. Такие продукты можно сжигать в качестве топлива или пускать на перегонку для получения жидких или газообразных углеводородов. В Бразилии сахарный тростник был применен для производства спиртовых топлив, заменяющих бензин. Их стоимость ненамного превышает стоимость обычных ископаемых энергоносителей. При правильном ведении хозяйства такой энергоресурс может быть восполняемым. Необходимы дополнительные исследования, особенно быстрорастущих культур и их рентабельности с учетом затрат на сбор, транспортировку и размельчение.

Топливные элементы.

Топливные элементы как преобразователи химической энергии топлива в электроэнергию характеризуются более высоким КПД, нежели теплоэнергетические устройства, основанные на сжигании. Если КПД типичной электростанции, сжигающей топливо, не превышает примерно 40%, то КПД топливного элемента может достигать 85%. Правда, пока что топливные элементы относятся к дорогостоящим источникам электроэнергии.

РАЦИОНАЛЬНОЕ ИСПОЛЬЗОВАНИЕ ЭНЕРГИИ

Хотя в мире пока еще не ощущается нехватки энергоресурсов, в предстоящие два-три десятилетия возможны серьезные трудности, если не появятся альтернативные источники энергии или не будет ограничен рост ее потребления. Очевидна необходимость более рационального использования энергии. Имеется ряд предложений по повышению эффективности аккумулирования и транспортирования энергии, а также по более эффективному ее использованию в различных отраслях промышленности, на транспорте и в быту.

Аккумулирование энергии.

Нагрузка электростанций изменяется на протяжении суток; происходят также ее сезонные изменения. Эффективность работы электростанций можно повысить, если в периоды провала графиков энергетической нагрузки затрачивать излишек мощности на перекачку воды в большой резервуар. Затем в периоды пиковой нагрузки можно выпускать воду, заставляя ее вырабатывать на ГАЭС дополнительную электроэнергию.

Более широкое применение могло бы найти использование мощности базового режима электростанции для накачки сжатого воздуха в подземные полости. Турбины, работающие на сжатом воздухе, позволили бы экономить первичные энергоресурсы в периоды повышенной нагрузки.

Передача электроэнергии.

Большие энергетические потери связаны с передачей электроэнергии. Для их снижения расширяется использование линий передачи и распределительных сетей с повышенным уровнем напряжения. Альтернативное направление – сверхпроводящие линии электропередачи. Электросопротивление некоторых металлов падает до нуля при охлаждении до температур, близких к абсолютному нулю. По сверхпроводящим кабелям можно было бы передавать мощности до 10 000 МВт, так что для обеспечения электроэнергией всего Нью-Йорка было бы достаточно одного кабеля диаметром 60 см. Установлено, что некоторые керамические материалы становятся сверхпроводящими при не очень низких температурах, достижимых с помощью обычной холодильной техники. Это удивительное открытие могло бы привести к важным новациям не только в области передачи электроэнергии, но и в области наземного транспорта, компьютерной техники и техники ядерных реакторов.

Водород как теплоноситель.

Водород – это легкий газ, но он превращается в жидкость при - 253° C. Теплотворная способность жидкого водорода в 2,75 раза больше, чем природного газа. У водорода имеется и экологическое преимущество перед природным газом: при сжигании в воздухе он дает в основном лишь пары воды.

Водород можно было бы без особых трудностей транспортировать по трубопроводам для природного газа. Можно также хранить его в жидком виде в криогенных резервуарах. Водород легко диффундирует в некоторые металлы, например титан. Его можно накапливать в таких металлах, а затем выделять, нагревая металл.

Магнитогидродинамика (МГД).

Это метод, позволяющий более эффективно использовать ископаемые энергоносители. Идея состоит в том, чтобы заменить медные токовые обмотки обычного машинного электрогенератора потоком ионизованного (проводящего) газа. Наибольший экономический эффект МГД-генераторы могут давать, вероятно, при сжигании угля. Поскольку в них нет движущихся механических частей, они могут работать при очень высоких температурах, а это обеспечивает высокий КПД. Теоретически КПД таких генераторов может достигать 50–60%, что означало бы до 20% экономии по сравнению с современными электростанциями на ископаемых энергоносителях. Кроме того, МГД-генераторы дают меньше сбросной теплоты.

Дополнительное их преимущество состоит в том, что они в меньшей степени загрязняли бы атмосферу выбросами газообразных оксидов азота и соединений серы. Поэтому МГД-электростанции могли бы, не загрязняя окружающей среды, работать на углях с повышенным содержанием серы.

Серьезные исследования в области МГД-преобразователей ведутся в Японии, Германии и особенно в России. Так, например, в России была запущена малая МГД-установка мощностью 70 МВт на природном газе, которая служила также опытной для создания электростанции на 500 МВт. В США разработки ведутся в меньших масштабах и в основном в направлении систем, работающих на угле. В течение 500 ч непрерывно проработал МГД-генератор мощностью 200 МВт, построенный фирмой «Авко Эверетт».

Пределы потребления энергии.

Непрерывный рост потребления энергии не только ведет к истощению запасов энергоресурсов и загрязнению среды обитания, но и в конце концов может вызвать значительные изменения температуры и климата на Земле.

Литература:

Энергетические ресурсы СССР , тт. 1–2. М., 1968
Антропов П.Я. Топливно-энергетический потенциал Земли . М., 1974
Одум Г., Одум Е. Энергетический базис человека и природы . М., 1978



ТЕМА 1. ВВЕДЕНИЕ

Предмет, основные понятия и определения

Энергия является важнейшим элементом устойчивого развития любого государства. Каждый виток вверх по спирали исторического развития человечества сопровождается более высоким уровнем потребления энергии. Подсчитано, что за 20-е столетие общее потребление первичных энергоресурсов в мире увеличилось в 13,5 раз, достигнув в 2000 году 13,5 млрд. т У.Т. Такие темпы расходования первичных энергоресурсов грозят быстрому истощению природных запасов

Энергосбережение - организационная, научная, практическая, информационная деятельность государственных органов, юридических и физических лиц, направленная на снижение расхода (потерь) топливно-энергетических ресурсов в процессе их добычи, транспортировки, хранения, производства, использования и утилизации.

В состав топливно-энергетического комплекса (ТЭК) входят пять систем энергетики:

· электроэнергетическая система (электроэнергетика), в состав которой в качестве подсистемы входит теплоснабжающая система (теплоэнергетика);

· система нефтеснабжения;

· система газоснабжения;

· система углеснабжения;

· система ядерной энергетики;

Производство электроэнергии обеспечивают электрические станции, преобразование – трансформаторы, транспортирование и распределение электрической энергии – линии электропередачи, потребление – различные приемники т.е. потребители энергии.

Под электроэнергетической системой , следует понимать совокупность взаимосвязанных электрических станций, подстанций, линий электропередач, электрических и тепловых сетей, а также потребителей электрической и тепловой энергии.

1.3. Эффективность использования и потребления энергии в мире и Беларуси

Эффективность использования и потребления энергии в любой стране оценивается энергообеспеченностью или удельными затратами условного топлива на 1-го жителя страны в год. Сравнительные данные по энергообеспеченности, валовому национальному продукту (ВНП) на душу населения и по энергоемкости ВНП по некоторым странам приведены в таблице 1.1.Таблица 1.1 Данные по ВНП, обеспеченности ТЭР и энергоемкости ВНП по некоторым странам.

№ п/п Страна ВНП на душу населения, дол. США Потребление ТЭР на 1 чел. в год, т У.Т./чел. Энергоем-кость ВНП, кг У.Т./дол.США Сравнитель-ная оценка энергоемкости ВНП, %
Республика Беларусь 3,8 1,76
Украина 4,7 2,46
Россия 5,8 2,19
Германия 5,9 0,23 13,1
США 11,3 0,44 25,0
Финляндия 8,5 0,45 26,0
Франция 5,5 0,23 13,1
Швеция 8,0 0,34 19,3
Япония 5,5 0,16 9,1

Анализируя данные, приведенные в таблице 1.1, необходимо отметить, что наибольшее потребление ТЭР среди приведенных стран имеют США – 11,3 т У.Т. на человека в год. В Республике Беларусь потребляется 3,6 т У.Т.. Здесь же приведено и сравнение энергоемкости ВНП стран по отношению к энергоемкости ВНП Беларуси.

Разразившийся в 1973-74 годах первый нефтяной кризис заставил индустриальные страны пойти на чрезвычайные меры, начать разрабатывать новые подходы к энергопотреблению. Для этого экономики этих стран подверглись коренной структурной, технологической и технической перестройке. Начиная с 1980-х годов, они начинают наращивать валовый национальный продукт, практически не увеличивая потребление энергоресурсов. Так, например, США за период с 1973 по 1987 годы увеличили ВНП на 40,2%, а энергопотребление увеличилось всего лишь на 3,2%. Аналогичная ситуация происходила и в промышленно развитых странах Европы. При росте ВНП на 13% потребление энергии в 1985 году оказалось даже на 6% ниже, чем в 1979году. За последние 20 лет энергоемкость ВНП в мире снизилась в среднем на 18%, а в индустриальных странах – на 21 – 27%.

Аналогичная ситуация происходит и Республике Беларусь (рисунок 1.1). За период времени с 1997 года по 2007 год ВВП страны вырос на 200,5%, а потребление ТЭР осталось практически на том же уровне – 104,5%. Это способствовало снижению энергоемкости ВВП, относительно данных за 1997г., на 47,9%. Показатели энергоемкости ВВП, исчисляемые по паритету покупательской способности, по различным странам мира в 2002 году приведены на рисунке 1.2. Как видно из этих данных энергоемкость ВВП в Беларуси составила 0,73 кг У.Т./доллар США. В России этот показатель оказался равным 0,84, а на Украине – 0,89 кг У.Т./доллар США. Это означает,

Еще одной проблемой экономики Республики Беларусь является энергоемкость продукции наших предприятий. По оценкам зарубежных специалистов энергоемкость продукции в среднем в 2 – 2,5 раза выше, чем в индустриально развитых странах. Так, например, при производстве химических удобрений у нас тратится электроэнергии в 2,3 раза, а тепловой энергии в 2,6 раза больше чем за рубежом. При переработке нефти на наших нефтеперерабатывающих заводах тратится энергии в 1,8 – 2,5 раза больше чем на аналогичных зарубежных заводах. Аналогичная ситуация наблюдается и в других секторах экономики, так энергоемкость сельхозпродукции в 3 – 4 раза выше, чем в развитых странах.

Все выше сказанное показывает, что мировой уровень технологий в сложившейся структуре энергопотребления позволяет в 1,5-2 раза снизить энергопотребление в энергоемких производствах.

ТЕМА 2. ВИДЫ ЭНЕРГЕТИЧЕСКИХ РЕСУРСОВ

Энергетическим ресурсом называют любой источник энергии, естественный или искусственно активированный, в котором сосредоточена энергия, используемая человеком.

Энергоресурсы можно классифицировать по следующим признакам:

1. По источникам получения ресурсы бывают ─ первичные (природные) и вторичные.

Первичные энергетические ресурсыв свою очередь разделяются:

2.По способам использования на топливные и нетопливные;

3. по признаку сохранения запасов на возобновляемые и невозобновляемые.

К топливным ресурсам относятся горючие вещества, которые сжигаются для получения тепловой энергии, например, все природные запасы топлив (нефть, газ, уголь, торф и т. п.).