Необычные растения        02.05.2020   

Энергия и ее движение в биосфере. Закономерности эволюции биосферы: принцип Реди; закон глобального замыкания биогеохимического круговорота; закон увеличения доли биологического компонента в замыкании биогеохимического круговорота веществ - Основы эколо

Рассмотрите рисунки 230-234. Какие химические соединения используют организмы в круговоротах веществ? Какое значение имеют процессы фотосинтеза, испарения воды, дыхания, азотофиксации для обеспечения круговоротов веществ и потока энергии в биосфере?

Все составляющие биосферу компоненты и происходящие в ней процессы тесно взаимосвязаны. Стабильность биосферы поддерживается постоянно происходящими в ней круговоротами веществ и превращением энергии. Круговороты разнообразны по масштабам и качеству явлений, например, круговорот воды, круговорот углерода, круговорот азота. Они осуществляются с участием всех компонентов биосферы и входят в состав единого биогеохимического круговорота.

Биогеохимический круговорот - обмен веществ и превращение энергии между различными компонентами биосферы, связанные с деятельностью ее организмов.

Основной движущей силой биогеохимического круговорота является непрерывно происходящий в биосфере поток энергии, связанный с деятельностью живого вещества.

Организмы нуждаются в энергии для поддержания своей жизнедеятельности. Энергия в биосфере существует в нескольких формах. Известны механическая, химическая, тепловая, электрическая и другие формы энергии. Переход одной формы энергии в другую, называемый преобразованием энергии, подчиняется закону сохранения энергии, который гласит, что энергия может превращаться из одной формы в другую, но не может быть создана или уничтожена.

Основной источник энергии в биосфере - это энергия Солнца (рис. 228). Она нагревает атмосферу и гидросферу, вызывает передвижение воздушных масс, океанических течений, испарение воды, таяние снега. Автотрофные организмы, главным образом зеленые растения, в результате реакций фотосинтеза преобразуют солнечную энергию в энергию химических связей созданных органических веществ. Значительная часть ее расходуется самими растениями на процессы жизнедеятельности. Меньшая часть химической энергии растений передается дальше по пищевым цепям гетеротрофным организмам. Гетеротрофные организмы, главным образом животные, преобразуют химическую энергию в другие ее формы, например механическую, электрическую, тепловую, световую. Некоторая часть аккумулированной зелеными растениями солнечной энергии может накапливаться в биосфере в виде запасов древесины, торфа, угля и горючих сланцев.

Рис. 228. Поток энергии в биосфере

Следовательно, круговорота энергии в биосфере не происходит. Этот процесс не является замкнутым. В биосфере наблюдается лишь поток энергии, связанный с превращением одной ее формы в другую.

Круговорот воды. Вода играет важнейшую роль в биогеохимическом круговороте, так как живые тела в среднем на 80% состоят из нее, а Мировой океан занимает более 2/3 поверхности земного шара (рис. 229).

Рис. 229. Распределение воды на Земле

В пределах всей планеты круговорот воды осуществляется между морями, океанами и материками (рис. 230). Вода, испаряемая Солнцем с поверхности морей и океанов, переносится ветрами на материки, где выпадает в виде атмосферных осадков. Значительная часть воды при этом оказывается связанной, например в виде снега и льда, т. е. является временно недоступной для организмов. С речными и грунтовыми стоками вода затем постепенно возвращается в океаны.

Рис. 230. Круговорот воды в биосфере

Значительная часть воды, имеющейся на суше, поглощается из почвы растениями и затем в виде водяного пара испаряется листьями для предотвращения перегревания. Часть воды растения расходуют на процесс фотосинтеза. Животные воду получают с питьем и с пищей. Удаляется из животных организмов вода в составе выдыхаемого воздуха, пота и других выделений.

Наземные растения, главным образом из влажных экваториальных лесов, испаряя воду, уменьшают ее поверхностный сток и удерживают влагу в атмосфере. Это препятствует размыванию почвы осадками и разрушению ее верхнего плодородного слоя. Сокращение площади экваториальных лесов в результате их интенсивной вырубки человеком приводит к засухам в прилегающих районах земного шара.

Рис. 231. Круговорот углерода в биосфере

Круговорот углерода. Углерод в биосфере в основном представлен двуокисью углерода (углекислым газом). Основной ее первичный источник - это вулканическая деятельность. Связывание углекислого газа происходит двумя путями (рис. 231). Первый состоит в его поглощении растениями в процессе фотосинтеза с образованием органических веществ и последующим отложением их в виде торфа, угля, горючих сланцев (рис. 232). Второй путь состоит в том, что углекислый газ растворяется в водоемах, переходя в карбонат-ионы и гидрокарбонат-ионы. Затем с помощью кальция или магния происходит осаждение карбонатов на дно водоемов в виде известняков. Запасы углекислого газа в атмосфере постоянно пополняются благодаря дыханию организмов, процессам разложения органических остатков, а также от сжигания топлива и выбросов промышленности.

Рис. 232. Торфяные отложения - один из вторичных источников углерода в биосфере

Круговорот азота. Основным источником азота в биосфере служит газообразный атмосферный азот. В небольших количествах атмосферный азот связывается с кислородом воздуха в нитраты при грозовых разрядах (рис. 233).

Рис. 233. Газообразный азот в атмосфере при грозе связывается с кислородом воздуха в нитраты

Основное связывание атмосферного азота осуществляется азотфиксирующими бактериями, обитающими в почве (рис. 234). Они синтезируют нитриты и нитраты, которые становятся доступными для использования растениями. В растениях азот переходит в состав органических соединений, например белков, нуклеиновых кислот и АТФ. При разложении трупов погибших организмов или при выделении мочи у животных, азот поступает в почву в виде соединений аммиака. Они затем окисляются до нитритов и нитратов и снова используются растениями. Частично нитраты почвы восстанавливаются денитрифицирующими бактериями до газообразного азота. Так осуществляется восполнение запасов газообразного азота в атмосфере. Запас нитратов в почве пополняется также благодаря внесению в нее человеком неорганических азотных и органических удобрений.

Рис. 234. Круговорот азота в биосфере

Итак, непрерывно происходящие в биосфере круговороты воды, углерода, азота и превращение энергии образуют единый биогеохимический круговорот. Вещества и элементы в нем используются организмами многократно. Энергия, в отличии от них, используется организмами только один раз. Биогеохимический круговорот не имеет полной цикличности. Часть веществ из него исключается и может накапливаться в природе.

Упражнения по пройденному материалу

  1. Что такое биогеохимический круговорот? Какими процессами он обеспечивается?
  2. Опишите, как происходит круговорот воды в биосфере. Какова роль в нем растений и животных?
  3. Как осуществляется круговорот углерода в биосфере? В каком виде углерод может накапливаться в природе?
  4. Опишите, как происходит круговорот азота в биосфере. Какова роль в нем азотфиксирующих и денитрифицирующих бактерий?
  5. Объясните, почему правильно говорить о происходящем в биосфере круговороте веществ и элементов, но неправильно говорить о круговороте энергии в биосфере?

1.Биосфе́ра (от др.-греч. βιος - жизнь и σφαῖρα - сфера, шар) - оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «пленка жизни»; глобальная экосистема Земли.

Биосфера - оболочка Земли, заселённая живыми организмами и преобразованная ими. Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году .

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом.

Существует и другое, более широкое определение: Биосфера - область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах. Так, например, рассматривается возможность существования жизни в океане спутника Юпитера Европы.

Основным понятием в экологии является «экосистема» . Этот термин введен в употребление А. Тенсли в 1935 г. Под экосистемой понимают любую систему, состоящую из живых существ и среды их обитания, которые объединены в единое функциональное целое.

Основными свойствами экосистем являются: способность осуществлять круговорот веществ, противостояние внешним воздействиям, производство биологической продукции.

Обычно выделяют: микроэкосистемы (например, небольшой водоем), которые существуют, пока в них присутствуют живые организмы, способные осуществлять круговорот веществ; мезоэкосистемы (например, река); макроэкосистемы (например, океан) а также глобальную экосистему – биосферу

Биосфера как глобальная экосистема

Понятие «биосфера» в научную литературу введено в 1875 г. австрийским ученым-геологом Эдуардом Зюссом К биосфере он отнес все то пространство атмосферы, гидросферы и литосферы (твердой оболочки Земли), где встречаются живые организмы.

Владимир Иванович Вернадский использовал этот термин и создал науку с аналогичным названием. В таком случае под биосферой понимается все пространство (оболочка Земли), где существует или когда-либо существовала жизнь, т. е. где встречаются живые организмы или продукты их жизнедеятельности. В. И. Вернадский не только конкретизировал и очертил границы жизни в биосфере, но, самое главное, всесторонне раскрыл роль живых организмов в процессах планетарного масштаба. Он показал, что в природе нет более мощной средообразующей силы, чем живые организмы и продукты их жизнедеятельности. В И Вернадский вывел первостепенную преобразующую роль живых организмов и обусловливаемых ими механизмов образования и разрушения геологических структур, круговорота веществ, изменения твердой (литосферы ), водной (гидросферы ) и воздушной (атмосферы ) оболочек Земли. Часть биосферы, где живые организмы встречаютсяв настоящее время, принято называть современной биосферой, (необиосферой ), древние же биосферы относят к (палеобиосферам ). Как пример последних можно указать безжизненные концентрации органических веществ (месторождения каменных углей, нефти, горючих сланцев.), запасы других соединений, образовавшихся при участии живых организмов (известь, мел, рудные образования).

Границы биосферы. Необиосфера в атмосфере располагается примерно до озонового экрана над большей частью поверхности Земли – 20-25 км. Гидросфера почти вся, даже и самая глубокая Марианская впадина Тихого океана (11 022 м), занята жизнью. В литосферу жизнь также проникает, но на несколько метров, ограничиваясь только почвенным слоем, хотя по отдельным трещинам и пещерам она распространяется на сотни метров. В результате границы биосферы определяются присутствием живых организмов или «следами» их жизнедеятельности. Экосистемы являются основными звеньями биосферы. На уровне экосистем основные свойства и закономерности функционирования организмов можно рассмотреть более детально и глубоко, чем это сделано на примере биосферы.

Через сохранение элементарных экосистем и решается главная проблема современности – предотвращение или нейтрализация неблагоприятных явлений глобального кризиса, сохранение биосферы в целом.

2. Живое вещество - вся совокупность тел живых организмов в биосфере, вне зависимости от их систематической принадлежности.

Это понятие не следует путать с понятием «биомасса», которое является частью биогенного вещества.

Термин введён В. И. Вернадским

Живое вещество развивается там, где может существовать жизнь, то есть на пересечении атмосферы, литосферы и гидросферы. В условиях, не благоприятных для существования, живое вещество переходит в состояние анабиоза.

Специфика живого вещества заключается в следующем:

    Живое вещество биосферы характеризуется огромной свободной энергией. В неорганическом мире по количеству свободной энергии с живым веществом могут быть сопоставлены только недолговечные незастывшие лавовые потоки.

    Резкое отличие между живым и неживым веществом биосферы наблюдается в скорости протекания химических реакций: в живом веществе реакции идут в тысячи и миллионы раз быстрее.

    Отличительной особенностью живого вещества является то, что слагающие его индивидуальные химические соединения – белки, ферменты и пр. – устойчивы только в живых организмах (в значительной степени это характерно и для минеральных соединений, входящих в состав живого вещества).

    Произвольное движение живого вещества, в значительной степени саморегулируемое. В. И. Вернадский выделял две специфические формы движения живого вещества: а) пассивную, которая создается размножением и присуща как животным, так и растительным организмам; б) активную, которая осуществляется за счет направленного перемещения организмов (она характерна для животных и в меньшей степени для растений). Живому веществу также присуще стремление заполнить собой все возможное пространство.

    Живое вещество обнаруживает значительно большее морфологическое и химическое разнообразие, чем неживое. Кроме того, в отличие от неживого абиогенного вещества живое вещество не бывает представлено исключительно жидкой или газовой фазой. Тела организмов построены во всех трех фазовых состояниях.

    Живое вещество представлено в биосфере в виде дисперсных тел – индивидуальных организмов. Причем, будучи дисперсным, живое вещество никогда не находится на Земле в морфологически чистой форме – в виде популяций организмов одного вида: оно всегда представлено биоценозами.

    Живое вещество существует в форме непрерывного чередования поколений, благодаря чему современное живое вещество генетически связано с живым веществом прошлых эпох. При этом характерным для живого вещества является наличие эволюционного процесса, т. е. воспроизводство живого вещества происходит не по типу абсолютного копирования предыдущих поколений, а путем морфологических и биохимических изменений.

Значение живого вещества

Работа живого вещества в биосфере достаточно многообразна. По Вернадскому, работа живого вещества в биосфере может проявляться в двух основных формах:

а) химической (биохимической) – I род геологической деятельности; б) механической – II род транспортной деятельности.

Биогенная миграция атомов I рода проявляется в постоянном обмене вещества между организмами и окружающей средой в процессе построения тела организмов, переваривания пищи. Биогенная миграция атомов II рода заключается в перемещении вещества организмами в ходе его жизнедеятельности (при строительстве нор, гнезд, при заглублении организмов в грунт), перемещении самого живого вещества, а также пропускание неорганических веществ через желудочный тракт грунтоедов, илоедов, фильтраторов.

Для понимания той работы, которую совершает живое вещество в биосфере очень важными являются три основных положения, которые В. И. Вернадский назвал биогеохимическими принципами:

    Биогенная миграция атомов химических элементов в биосфере всегда стремится к максимальному своему проявлению.

    Эволюция видов в ходе геологического времени, приводящая к созданию устойчивых в биосфере форм жизни, идет в направлении, усиливающем биогенную миграцию атомов.

    Живое вещество находится в непрерывном химическом обмене с космической средой, его окружающей, и создается и поддерживается на нашей планете лучистой энергией Солнца.

Выделяют пять основных функций живого вещества:

    Энергетическая . Заключается в поглощении солнечной энергии при фотосинтезе, а химической энергии – путем разложения энергонасыщенных веществ и передаче энергии по пищевой цепи разнородного живого вещества.

    Концентрационная . Избирательное накопление в ходе жизнедеятельности определенных видов вещества. Выделяют два типа концентраций химических элементов живым веществом: а) массовое повышение концентраций элементов в среде, насыщенной этими элементами, например, серы и железа много в живом веществе в районах вулканизма; б) специфическую концентрацию того или иного элемента вне зависимости от среды.

    Деструктивная . Заключается в минерализации необиогенного органического вещества, разложении неживого неорганического вещества, вовлечении образовавшихся веществ в биологический круговорот.

    Средообразующая . Преобразование физико-химических параметров среды (главным образом за счет необиогенного вещества).

    Транспортная . Пищевые взаимодействия живого вещества приводят к перемещению огромных масс химических элементов и веществ против сил тяжести и в горизонтальном направле нии.

Живое вещество охватывает и перестраивает все химические процессы биосферы. Живое вещество есть самая мощная геологическая сила, растущая с ходом времени. Воздавая должное памяти великого основоположника учения о биосфере, следующее обобщение А. И. Перельман предложил назвать «законом Вернадского»:

3. Энергетика биосферы

В энергетических процессах в биосфере решающая роль (99%) принадлежит радиации Солнца, которая определяет тепловой баланс и термический режим биосферы Земли. Из всего количества энергии, 5,42 · 10 4 Дж, получаемой Землей от Солнца, 33% отражается облаками и поверхностью суши, а также пылью в верхних слоях атмосферы. Эта часть составляет альбедо Земли, 67% энергии поглощается атмосферой и земной поверхностью (континентами и Мировым океаном) и после ряда превращений уходит в космическое пространство (рис. 5.2).

В атмосфере нагревание происходит снизу, что приводит к образованию мощных конвективных потоков и общей циркуляции воздушных масс. Океанические течения, движимые преимущественно ветром, перераспределяют полученную солнечную энергию в горизонтальном направлении, что влияет на снабжение атмосферы теплом. Мировой океан и атмосфера представляют собой единую тепловую систему.

За счет излучения и конвекции поддерживается весь энергетический баланс нашей планеты. Круговорот воды в биосфере также определяется поступлением солнечной энергии.

Весьма незначительная часть общего потока солнечной энергии поглощается зелеными растениями в процессе осуществления реакции фотосинтеза. Эта энергия составляет 10 22 Дж в год (приблизительно 0,2% от всей суммы солнечной радиации). Фотосинтез - это мощный естественный процесс, вовлекающий в круговорот огромные массы вещества биосферы и определяющий большое количество кислорода в атмосфере. Фотосинтез представляет собой химическую реакцию, протекающую за счет солнечной энергии при участии хлорофилла зеленых растений: n СО 2 + n Н 2 О = Сn Н 2 n О 2 + n О 2 . Круговорот углерода в биосфере изображен на рис. 5.3.

Таким образом, за счет двуокиси углерода и воды синтезируется органическое вещество и выделяется свободный кислород. За немногим исключением фотосинтез происходит на всей поверхности Земли и создает огромный геохимический эффект, который может быть охарактеризован количеством всей массы углерода, ежегодно вовлекаемого в построение органического живого вещества биосферы. Ежегодно используется и поглощается CO 2: на суше 253-10 9 т, в океане - 88-10 9 т, а всего - 341 · 10 9 т. С использованием 135 · 10 12 т воды создается 232 · 10 9 т органических веществ С n Н 2 n О n и 248 · 10 9 т кислорода уходит в атмосферу.

связи с фотосинтезом в биосфере в круговорот вовлекаются 1 млрд т азота, 260 млн т фосфора и 200 млн т серы.

В течение 6 - 7 лет поглощается вся углекислота атмосферы, за 3000-4000 лет обновляется весь кислород атмосферы, а в течение 10 млн лет фотосинтез перерабатывает массу воды, равную всей гидросфере. Если учесть, что биосфера существует на Земле не менее 3,8 - 4 млрд лет (а Земля примерно - 4,5 млрд лет), то можно сказать, что воды Мирового океана прошли через биогенный цикл, связанный с фотосинтезом, не менее 1 млн раз. Все эти величины отражают огромную важность фотосинтеза в истории Земли.

Заметим здесь, что при гибели организма происходит обратный процесс - разложение органического вещества путем окисления, гниения и т.д. с образованием конечных продуктов разложения. Этот процесс в биосфере Земли приводит к тому, что количество биомассы живого вещества приобретает тенденцию к определенному постоянству. Количество биомассы примерно в 10 раз превышает ежегодно вырабатываемое в процессе фотосинтеза количество органического вещества (0,232 · 10 12 т). Общая масса вещества, прошедшего биосферу, в 12 раз превышает массу Земли. Так работает эта "живая фабрика".

Поток энергии в биосфере. Энтропийность биосферных процессов. Закономерности эволюции биосферы: принцип Реди; закон глобального замыкания биогеохимического круговорота; закон увеличения доли биологического компонента в замыкании биогеохимического круговорота веществ

Биосфера представляет оболочку Земли, включающую в себя как область распространения живого вещества, так и само это вещество.

Вернадский показал, что ведущим фактором, преобразующим лик Земли, является жизнь. В современном понимании биосфера Земли представляет собой открытую систему со своими «входом» и «выходом».

Границы биосферы

  • · Верхняя граница в атмосфере: 15--20 км. Она определяется озоновым слоем, задерживающим коротковолновое ультрафиолетовое излучение, губительное для живых организмов.
  • · Нижняя граница в литосфере: 3,5--7,5 км. Она определяется температурой перехода воды в пар и температурой денатурациибелков, однако в основном распространение живых организмов ограничивается вглубь несколькими метрами.
  • · Граница между атмосферой и литосферой в гидросфере: 10--11 км. Определяется дном Мирового Океана, включая донные отложения.

Организация любой системы зависит от числа ее компонентов и их иерархии. Каждая система имеет несколько уровней организации. Биосфера является наиболее сложной и высокоорганизованной системой.

Современное состояние любой природной системы рассматривается как определенная стадия развития в процессе ее эволюционирования. В современном понимании биосфера Земли - глобальная открытая саморегулирующаяся система, работающая на солнечной энергии. Продукты жизнедеятельности в конечном итоге имеют выход в геологию, т. е. на время выводятся из биосферного круговорота. Саморегулирование биосферы Земли обеспечивается живыми организмами. Биосферу можно рассматривать как кибернетическую систему, которая только тогда обладает устойчивостью для блокирования внешних и внутренних возмущений, когда она имеет достаточное внутреннее разнообразие.

Вещественное и энергетическое взаимодействие всех составляющих биосферу частей между собой и окружающей средой составляет основу экологии.

Для оптимального природопользования оценивают экологическое качество среды (в условных единицах). Точкой отсчета для оценки изменений служит некое фоновое состояние природной среды, которое не подвержено локальным антропогенным воздействиям. С экологических позиций антропогенное воздействие (тепловое, акустическое, световое, химическое, радиационное) создает помехи, которое повышает фоновое состояние (стандарт). Эти антропогенные помехи в отличие от естественых ведут не к отбору, а к угнетению и гибели организмов.

В основу стратегии развития биосферы положены следующие принципы:

  • 1. Технический прогресс не только желателен, но и жизнено необходим.
  • 2. Народонаселение и ресурсы не могут расти беспредельно.
  • 3. Оптимальная емкость среды неизвестна.
  • 4. Создания социально-экономического механизма гомеостаза в системе «человек-природа».
  • 5. Соблюдение законов оптимальности.

Поток энергии в биосфере складывается из энергии Солнца и внутренней энергии Земли. Однако энергетический обмен охватывает все составные части биосферы, включая и живое вещество.

Биосфера начала формироваться не позднее, чем 3,8 млрд. лет назад, когда на нашей планете стали зарождаться первые организмы. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Проходящие в биосфере процессы постоянно меняются, в зависимости от окружающих факторов.

Эволюция биосферы - сложный, многогранный процесс, участниками которого являются не только живые организмы, но и многочисленные силы природы как земного, так и космического происхождения. Потому познание закономерностей эволюции - непростой вопрос, волновавший умы многих естествоиспытателей с глубокой древности. Несомненно, огромный вклад в анализ эволюции биосферы, до сих пор не оценённый в должной мере, сделан В.И. Вернадским. В рамках учения о биосфере он не только рассмотрел основополагающую роль живого вещества в функционировании биосферы, но и глубоко проанализировал направленность различных процессов в ходе её развития. Не случайно это дало основание Д. Гринвальду (Grinevald, 1996) назвать Вернадского «отцом глобальной экологии".

Деятельность человечества давно приобрела глобальные аспекты. Переход биосферы в ноосферу и обусловлен тем, что антропогенный фактор становится всё более определяющим биосферные процессы и, в конечном итоге, эволюцию биосферы. Возросшая сеть научных наблюдений фиксирует разнообразные проявления глобальных изменений природной среды и очень часто с негативных позиций. Действительно, фиксируемые этой сетью результаты дают повод говорить об имеющих место необратимых изменениях биосферы, исчезновении видов и даже возможной гибели человеческой цивилизации.

Однако насколько достоверны выводы на основании этих ничтожных по длительности в сравнении с историей Земли и биосферы наблюдений? В чем причины тех следствий, которые мы наблюдаем в природе? Насколько реальны апокалипсические предупреждения работ Римского клуба? Погубит ли человечество себя на Земле или его ждет миссия заселения Вселенной? Реализуется ли идея ноосферы или это очередной миф, и человек исчезнет как его многочисленные предшественники в цепочке эволюции?

История биосферы - непрерывный процесс необратимых изменений атмосферы, гидросферы, литосферы, происходящих с активнейшим участием живого вещества. История биосферы - это чреда глобальных катастроф, приводящих к перестройке климата, рельефа, к глобальным вымираниям живых организмов. Но каждый раз после таких катастроф развитие продолжалось, жизнь восстанавливалась, и более того, активность живого вещества (в т.ч. биоразнообразие) как правило после этого превосходило свой прежний уровень.

Выдающиеся открытия ХХ века в биологии, палеонтологии, генетике, экологии дают новый импульс к анализу закономерностей процессов развития, эволюции биосферы, на основании которых следует строить научно обоснованные прогнозы дальнейшей судьбы биосферы и человеческой цивилизации. Знание экологических процессов и их изменений во времени даёт возможность понять истинные причины современных демографических процессов, оценить продукционный и ассимиляционный потенциалы биосферы, помочь человечеству преодолеть потребительское отношение к природным ресурсам и найти новое понимание целей развития цивилизации.

Эволюция живого началась с возникновения форм преджизни, а затем и праорганизмов. И с этого геологического «момента» начал действовать принцип Реди: живое происходит только от живого, между живым и неживым веществом существует непроходимая граница, хотя и имеется постоянное взаимодействие. Обобщение, сделанное итальянским естествоиспытателем и врачом Франциско Реди (1626-1698), было заново сформулировано В.И. Вернадским в 1924 году.

Закон глобального замыкания биогеохимического круговорота - биосфера не может существовать без замыкания биогеохимических циклов (круговоротов элементов) веществ.

Беспрерывная циркуляция в биосфере химических элементов, переход их из внешней среды в организмы и обратно. Биогеохимические круговороты: круговорот воды, газообразных веществ, химических элементов.

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими циклами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями. Закон увеличения доли биологического компонента в замыкании биогеохимического круговорота веществ. Колчинский выделяет следующие тенденции в эволюции биосферы: постепенное увеличение общей ее биомассы и продуктивности; прогрессивное накопление аккумулированной солнечной энергии в поверхностных оболочках Земли; увеличение информационной емкости биосферы, проявляющейся в нарастающей диверсификации (росте разнообразия) органических форм, увеличении числа геохимических барьеров и возрастании дифференцированности физико-географической структуры биосферы; усиление некоторых биогеохимических функций живого вещества и появление новых функций; усиление преобразующего воздействия жизни на атмосферу, гидросферу и литосферу и увеличение роли живого вещества и продуктов его жизнедеятельности в геологических, геохимических и физико-географических процессах; расширение сферы действия биотического круговорота и усложнение его структуры.

Существование биосферы основано на непрерывном движении вещества и информации внутри живых организмов и между организмами и окружающей их средой. Это движение требует энергии, и каждый организм и биосфера в целом работают как тепловые машины. При этом они, естественно, подчиняются основным законам (началам) термодинамики.

Первое начало или закон сохранения энергии гласит, что «энергия инвариантна по отношению к любым процессам». Это означает, что энергия может переходить из одной формы в другую, но её суммарное количество остаётся постоянным. Например, свет может перейти в тепло или в потенциальную химическую энергию, запасённую в органическом веществе растения в процессе фотосинтеза, но общее количество энергии при этом останется тем же 1 .

Второй закон (начало) термодинамики гласит, что в изолированной системе при любых превращениях энергии часть её рассеивается и становится недоступной для дальнейших превращений в пределах данной системы. Если речь идёт о тепловой энергии, то рассеянная энергия переходит в хаотическое движение частиц окружающей материи (например, в тепловое движение молекул). В частности, тепло может быть передано от более холодного тела к более тёплому только с затратой механической или иной не тепловой энергии, которая при этом будет рассеяна (другая формулировка второго начала). Таким образом, любые процессы, связанные с превращениями энергии, ведут к переходу части энергии в энергию хаоса в системе.

Мерой хаотичности или неупорядоченности изолированной системы служит величина, названная энтропией. В любой изолированной системе идут процессы рассеяния энергии внутри системы, и, следовательно, энтропия растёт (третья формулировка второго начала). Когда энтропия изолированной системы достигает максимума, температура во всей системе выравнивается, процессы в ней замирают, остаётся только хаотическое движение, и систему настигает «тепловая смерть» . Из второго начала следует, что для возникновения и роста в системе упорядоченных структур требуется поступление извне концентрированной энер-

гии, которой соответствует температура выше температуры хаотического движения в системе. Часть поступающей энергии пойдёт на увеличение внутренней потенциальной энергии этих структур, а часть - рассеется в виде хаотического движения в остальной системе, вне упорядоченных структур (рис. 2.8). Энергия этого хаотического движения соответствует наиболее низкой температуре в системе и не может быть использована в пределах системы. Структурно упорядоченная часть системы сбрасывает образующуюся в ней энтропию вовне вместе с рассеянной энергией.

Рис. 2.8.

термодинамической системе

В биосфере продуценты непосредственно используют концентрированную энергию солнечного света и ‘/ 10 часть энергии захваченных фотонов преобразуют в потенциальную химическую энергию фотосинтезированного живого вещества, а 9 / 10 расходуют на испарение влаги и собственный обмен веществ, и эти 9 /,о рассеиваются в виде низкотемпературного тепла. Консу-менты, сапрофаги и детритофаги расходуют химическую энергию, полученную с пищей, примерно в тех же пропорциях. Всё происходит в соответствии с правилом «10 %» Линдемана, и оно, в сущности, означает, что, в конце концов, вся полученная экосистемой энергия рассеивается в виде низкотемпературного тепла. Таким образом, эффективность (или «коэффициент полезного действия» организмов как тепловых машин) примерно одинакова на всех трофических уровнях и составляет около 10 %.

На рис. 2.9 показаны потоки энергии в тепловой машине Земли. На внешнюю область атмосферы падает поток солнечного излучения 5 0 , равный 1396 Вт м -2 или примерно ’/ 3 ккал м 2 с -1

Отражение

облаками,

частицами

поверхностью

Инфракрасное

излучение

Солнечное

излучение

Поглощение

Поглощение

атмосферой

поверхностью

Испарение, излучение, конвекция, теплопроводность

Океаническая

циркуляция


Энергия радиоактивного распада и гравитационного сжатия Земли

Рис. 2.9. Тепловая машина атмосфера-Земля. Поверхность Земли является главным источником нагрева и циркуляции атмосферы, хотя сама получает почти всю энергию от Солнца. Вклад радиоактивности и гравитационного сжатия Земли в общий баланс энергии ничтожен

(солнечная постоянная). Этот поток пересекается диском Земли площадью л/? 2 , где Я - радиус Земли, но распределяется по всей поверхности Земли 4пЯ 2 (см. рис. 2.3). Поэтому поток солнечной энергии, перпендикулярный поверхности Земли, в среднем составляет только 349 Вт м 2 . Он имеет спектр длин электромагнит-

ных волн, соответствующий излучению абсолютно чёрного тела 1 , нагретого до 6000 К (рис. 2.10) .

Около 30 % этого излучения отражается облаками и атмосферой обратно в космос, и около 15 % поглощается в атмосфере. Помимо облаков в рассеянии, поглощении и отражении солнечной радиации велика роль мельчайших твёрдых аэрозольных частиц с размерами меньше нескольких микрон (микрометров). Примерно 3 % радиации Солнца поглощается озоном и кислородом озонового слоя атмосферы - это ультрафиолетовая часть солнечного излучения, и 12 % захватывается углекислым газом (С0 2) и водяным паром (рис. 2.10). На поверхность Земли попадает 55 % солнечного излучения, из которых 5 % отражается обратно в космос, не задерживаясь в атмосфере. Всего непосредственно отражается в космос 35 %. Эта величина есть средняя отражательная способность, или альбедо , Земли. Поглощённая поверхностью Земли энергия составляет примерно половину радиации, попадающей в верхние слои атмосферы. Около половины этой поглощённой радиации (энергии инсоляции) уходит на испарение воды с поверхности океанов и образование облаков, а вторая половина - на собственно нагрев поверхности. И только малая доля - примерно 1,5 % - захватывается растениями и непосредственно используется для поддержания жизни.

400 Поток излучения, ПВт /мкм

избирательного

(неполного)

поглощения

поглощения Н 2 0 и С0 2

  • 100 ?

Ультрафиолет

Инфракрасные лучи

Рис. 2.10. Спектры излучения Солнца (на верхней кромке атмосферы Земли) и Земли. Затемнены области спектров, где происходит поглощение излучения указанными на рисунке атмосферными газами. Мощность излучения выражена в петаваттах на микрометр (мкм) длины волны. 1 ПВт (петаватт) = 10 15 Вт

Помимо солнечной радиации поверхность Земли подогревается потоком тепла, поступающим из недр Земли, но этот поток пренебрежимо мал по сравнению с потоком радиации Солнца.

Разными путями поглощённая поверхностью энергия радиации возвращается в атмосферу (рис. 2.9). Накопленная облаками теплота испарения попадает в воздух при образовании осадков, а энергия нагрева передаётся атмосфере через конвективные потоки тепла, инфракрасное излучение поверхности и, в очень небольшой доле, через теплопроводность. Энергия теплосодержания атмосферы расходуется на образование атмосферной циркуляции, то есть преобразуется в кинетическую энергию ветров и морских волн, и далее через трение снова в тепло.

Водяной пар, углекислый газ и, отчасти, метан СН 4 и некоторые другие атмосферные примеси перехватывают инфракрасное излучение как Солнца, так и Земли (рис. 2.10). Эти атмосферные примеси действуют подобно прозрачной крыше парника, раскинутого над Землёй, пропуская к Земле коротковолновую часть спектра и задерживая у Земли длинноволновое тепловое излучение. Отсюда и их название - парниковые газы. Возникающий благодаря ним парниковый эффект играет важнейшую роль в тепловом балансе Земли.

Так как в среднем температура Земли не меняется, Земля должна излучать в космос из верхней атмосферы столько же энергии, сколько получает от Солнца и других, не столь значимых источников. Спектр длин электромагнитных волн, излучаемых в космос верхней атмосферой Земли, соответствует излучению абсолютно чёрного тела с температурой около 250 К. Если бы не было парникового эффекта, то и температура Земли упала бы до 250 К (то есть до -23 °С), и жизнь на Земле вряд ли была бы возможна, по крайней мере, в её нынешних формах. Однако уходящее излучение поверхности Земли, продвигаясь вверх, многократно поглощается и переизлучается парниковыми газами (в том числе в обратном направлении), и на каждом уровне температура и уходящий поток энергии снижаются. Поэтому средняя температура поверхности Земли удерживается на уровне 288 К (15 °С), и спектр её излучения соответствует этой температуре (рис. 2.10).

Весьма вероятно, что переходы от периодов потепления на Земле к ледниковым периодам и обратно тесно связаны с колебаниями концентраций парниковых газов и пылевых - аэрозольных частиц в атмосфере. Важную роль в этих процессах играют отличия в альбедо различных типов поверхности. Из рис. 2.11 ясно, что рост площади ледников и, отчасти, песчаных пустынь ведёт к росту альбедо Земли в целом, тогда как увеличение площади океана и растительности - к его (альбедо) уменьшению.

Парниковые газы «согревают» Землю, аэрозольные частицы, отражая обратно в космос солнечное излучение, её «остужают».

Вода Трава Чернозём Песок Лёд и снег

Рис. 2.11.

В периоды временного усиления вулканической деятельности содержание частиц в атмосфере резко растёт, поэтому средняя температура на Земле начинает падать. При этом растут ледники и, прежде всего, полярные шапки Земли возле её полюсов. Рост полярных шапок и сокращение площади океана увеличивают альбедо Земли, что ускоряет процесс охлаждения. Одновременно уменьшается испарение с поверхности океана, поэтому падают содержание водяного пара в воздухе и облачность. Это приводит к уменьшению альбедо, то есть росту нагрева поверхности Земли, и в какой-то момент процесс начинает идти в обратном направлении, пока вся система тепловой машины Земли не вернётся в состояние, близкое к исходному.

Возможен толчок и в обратном направлении, если какой-либо фактор приведёт к потеплению. Таким фактором может быть, например, антропогенный рост концентрации С0 2 в атмосфере вследствие сжигания человеком огромных количеств ископаемого топлива - нефти, угля и природного газа. Из рис. 2.10 видно, что именно С0 2 в наибольшей мере препятствует тепловому излучению Земли в космос. Наблюдаемый рост концентрации С0 2 , составляющий примерно 0,3 % в год, приводит к уменьшению альбедо Земли. Соответственно будет расти средняя температура. Если начнётся интенсивное таяние полярных шапок и гренландского ледника, то скорость уменьшения альбедо ещё более возрастёт и соответственно ещё более возрастёт средняя температура на Земле. Этому процессу отчасти противостоят растворение избытка С0 2 в океане и поглощение его растительностью, но их может оказаться недостаточно. Такое развитие событий может привести к глобальному потеплению. При этом надо учитывать, что избыток энергии, полученный поверхностью Земли, в значительной части сначала уйдёт на испарение, превратится в энергию ветра и морских течений, что само по себе ведёт ко многим крайне нежелательным последствиям.

  • Строго говоря, во Вселенной постоянной остаётся сумма энергии и массы, так как масса превращается в лучистую энергию при ядерных реакциях, например, в недрах Солнца и других звёзд или в атомном реакторе. Вместе с тем энергичный квант излучения может превратиться в пару материальных частиц электрон-позитрон. Впрочем, в биосфере подобные превращения не происходят.
  • Можно рассматривать второе начало термодинамики и как выражение того обстоятельства, что любая система стремится к состоянию устойчивого равновесия, при котором энтропия системы достигает абсолютного максимума.
  • Абсолютно чёрное тело - тело, поглощающее всё излучение, попадающее на его поверхность. При этом такое тело обладает и наибольшей способностью к излучению при данной температуре. Пример абсолютно чёрного тела - отверстие печи: попавшие в него лучи не могут выйти обратно, но у горящей печи из него идёт максимальный поток излучения.
  • Здесь и далее расчёты температур основаны на законе Стефана - Больцмана, согласно которому интенсивность излучения с поверхности абсолютно чёрного тела Е=аТ58, где а - постоянная Больцмана, равная 5,67 10-8 Вт м-2 К-4, и Т - абсолютная температура в градусах Кельвина, К. Длины электромагнитных волн А.мах, соответствующие максимумам спектров излучения, определяются законом Вина Хмах [мкм] = 2897/Г.
  • Основным источником атмосферных аэрозольных частиц является океан. При обрушении волн образуются микроскопические капельки солёной воды, которые быстро высыхают, образуют частицы солей и

Потоки энергии и вещества в биосфере неразрывно связаны с потоками информации. Ранее мы рассмотрели, что способность восприни­мать, накапливать и использовать информацию является одной из главных особенностей живого вещества. Эта способность не­разрывно связана с построением упорядоченных структур (организма, популяции, биоценоза и т.д.).

Благодаря биологической эволюции живые организмы выра­ботали множество механизмов адаптации ,то есть приспособле­ния к условиям жизни. Более того, само строение и физиология организмов есть результат адаптации. Первое, чему должны были научиться живые организмы, - это различать в окружаю­щей среде молекулы и частицы, пригодные в пищу, от инертных или опасных. Так возникли хеморецепторы,сохраненные у рас­тений и высших животных в виде вкуса и обоняния. Это уже ин­формационная связь организма с внешним миром. Как только образовалась живая клетка и в ней специализированные органеллы, потребовался обмен информацией между ними. Перво­начально обмен веществ и энергией внутри клетки являлся од­новременно и обменом информационными сигналами. Однако нуклеиновые кислоты (ДНК и информационная РНК) стали вы­полнять преимущественно информационные функции. По мере усложнения органических структур появились гормоны и гормоноподобные вещества с их чисто информационно-командными функциями. Специализированные железы внутренней секреции, генерирующие эти вещества, образовали эндокринную систему управления организмом.

С увеличением размеров животные уже не могли обходиться только химическими информационными связями. Слишком мед­ленными оказываются процессы передачи информации. Так поя­вилась нервная система, использующая быстрые электрические сигналы, и новые органы чувств (рецепторы)- зрение и слух, да­ющие информацию об окружающей среде на больших расстояни­ях и практически мгновенно. Увеличение количества и качест­венные изменения поступающей извне информации, а также не­обходимость согласованных движений всех органов тела привели к образованию центральной нервной системы. При этом железы внутренней секреции, занимающие наивысшее положение в эн­докринной системе - гипоталамус и гипофиз,расположились в головном мозге (скорее мозг возник вокруг них) и обеспечивают согласование действий нервной и эндокринной систем.

С развитием нервной системы у животных появилась спо­собность обмена зрительными и звуковыми сигналами, а следом за тем и способность к обучению потомства. Эта последняя спо­собность неразрывно связана с появлением головного мозга и свободной, незаполненной изначально памяти. Накопленная живым организмом информация разделилась на врождённую, переданную химическим путём от предков, и приоб­ретённую, полученную сигнальным путём за счёт обучения и собственного опыта.

Важнейшим свойством живого вещества, принципиально от­личающим его от косной материи, является передача наследст­венной информации из поколения в поколение. Эта связь осу­ществляется с помощью генетического кода, носителями кото­рого служат нуклеиновые кислоты.

Принципиальным адаптационным шагом в эволюции ока­зался переход от вегетативного к половому размножению. Дело в том, что под воздействием внешних факторов, прежде всего ра­диационного фона, химических веществ и вирусной инфекции, в спиралях дезоксирибонуклеиновой кислоты возникают нарушения или мутации,то есть наследственная информация может портиться. При вегетативном, бесполом размножении у популя­ции нет иного способа исправить эти нарушения кроме гибели носителей вредных мутаций. Половое размножение даёт воз­можность корректировать ошибки, возникшие в генетическом коде, так как вероятность одинаковых нарушений у обоих роди­телей мала. Именно поэтому опасны браки между кровными родственниками, когда вероятность одинаковых хромосомных дефектов у обоих родителей резко возрастает, и, напротив, по­томство отдалённых генетических линий бывает особенно силь­ным и жизнеспособным.

При вегетативном размножении говорить об индивидуаль­ном биологическом возрасте особи в принципе бессмысленно. Понятие возраста особи возникает вместе с половым размноже­нием, причём механизм запрограммированного старения поя­вился, скорее всего, на поздних этапах эволюции. Такие древ­ние виды, как крокодилы, черепахи или акулы, ещё этого меха­низма, по-видимому, не имеют. Они потенциально бессмертны и погибают от болезней, врагов или в силу изменения условий обитания. Запрограммированное старение и смерть от старо­сти - пример адаптационного признака, полезного для вида в целом, но не для отдельного организма. Они обеспечивают сме­ну поколений и отбор генофонда в популяции, позволяющие ей эффективно адаптироваться к постепенным изменениям среды обитания.

Динамика биосферы

Биосфере, как и любой другой природной системе, свойственна динамика . Этот термин означает систему закономерных изменений состоя­ния среды обитания живых организмов и соответственно состояния самих этих организмов, а также непрерывных нарушений последнего.

Как известно, к границам биосферы подходят различные виды космических, и прежде всего солнечных, потоков вещества и энер­гии (видимый свет, тепловые инфракрасные лучи, ультрафиолетовое и радиоактивное излучение, а также коротковолновое и рентгено­вское излучение); большая их часть задерживается в высоких слоях атмосферы и на границе ее с космическим пространством. При этом первопричиной динамики биосферы является поток поступающей на Землю солнечной энергии. Проходя через атмосферу и попутно взаи­модействуя с ней, он определяет совокупность климатических про­цессов. Конкретные состояния последних в каждом месте в каждый момент времени называют погодой .

Именно постоянные изменения погодных условий служат глав­ной причиной разнообразных колебательных изменений в природе биосферы. Как известно, атмосфера нагревается неравномерно, что в свою очередь заставляет воздух постоянно перемешиваться; при этом неоднородность земной поверхности весьма осложняет указанное пе­ремешивание. При этом необходимо учитывать и воздействие мате­риков и океанов. Так, материки усиливают температурные контрас­ты: зимой вблизи полюсов они сильнее охлаждаются, а летом в тро­пиках сильнее прогреваются. Напротив, океаны эти контрасты ослабляют.

Воздушные потоки в жизни биосферы играют большую роль. Благодаря им доставляются сотни миллиардов тонн воды из океанов, которые далее увлажняют сушу, они же приносят почти весь необхо­димый для жизненных процессов йод. Однако в результате воздей­ствия многих факторов траектории воздушных потоков периодически отклоняются от средних положений. Из-за этого в различных местах земли наступают заморозки или оттепели, засухи или дожди, сти­хийные бедствия или, напротив, периоды устойчивости природных факторов.

Обязателен учет роли геологических факторов, которые прелом­ляют и конкретизируют влияние изменений погодных процессов на природу. В частности, действие заморозков ослабевает в положи­тельных и усиливается в отрицательных формах рельефа, засуха силь­нее проявляется не только на южных, но и на глинистых склонах. Наконец, при прогнозировании последствий изменения погоды нельзя не учитывать роль почвенного покрова и, прежде всего его замедлен­ную реакцию на изменения погодных условий. Она в свою очередь тормозит реакцию растительности на изменения последних, что оп­ределенным образом стабилизирует состояние всего живого покрова. Указанное явление торможения проявляется, в частности, в том, что атмосферная засуха может быть весьма сильной, но в почве, тем не менее, имеются запасы влаги, которые остались в ней от преды­дущих лет. Поэтому дефицит влаги проявляется не так остро.

Вышеизложенное следует увязывать с тем, что скорость реакции различных видов живых существ на изменение погоды (при наличии взаимосвязи между ними) обусловливает непрямолинейность влия­ния погодных условий на экологические системы. Поэтому биоти­ческие факторы служат одновременно источником как автоколеба­ний природных сообществ, так и их стабилизации.

Огромную роль в динамике биосферы играют геокосмические рит­мы. Очевидно, что вся­кое количественное или качественное изменение в притоке космичес­кой энергии сказывается на состоянии исключительно чувствительных передающих систем (атмосферы, гидросферы и почвы), а затем и на существующей за счет энергии Космоса биосфере. В частности, была установлена связь колебаний численности видов живых существ, урожаев, динамики заболеваемости населения с солнечными процес­сами. Однако следует иметь в виду, что космические ритмы очень разнообразны. Так, наряду с хорошо изученными 11,5-летними солнечны­ми циклами существует множество других - от одномесячных лунных до длящихся миллиарды лет галактических ритмов. Налагаясь друг на друга, эти ритмы оказывают сложные интегральные воздействия на жи­вые организмы, характер которых до сих пор до конца не ясен.

Ныне, на динамику биосферы огромное влияние оказывает челове­ческая деятельность. При этом она в отличие от естественных экологических факторов, обусловливает не колебательные, а преимущественно поступательные изменения приро­ды. Так, развитие водного транспорта влечет за собой создание кана­лов, соединяющих различные речные системы, и, соответственно, раз­витие обменов элементами флоры и фауны между водными бассейна­ми. Что касается колебательных явлений в природе, связанных с человеческой деятельностью, то они весьма редки. Это либо ритми­ческие, часто многолетние процессы смены культурных растений в се­вообороте, либо аномальные явления.

Устойчивость биосферы

Что же позволяет жизни во всех ее формах и проявлениях быть достаточно устойчивой во времени и пространстве? В попытке ответить на этот весьма сложный вопрос следует учесть, что жизнь в значительно большей степени есть явление космическое, нежели земное. Результаты исследований последних лет показывают, что строение, эволюция биосферы, как и устойчивость последней, предопределены начальными условиями, которые существовали до современного состояния Вселенной, и самим происхождением Кос­моса.

Характеризуясь, огромной энер­гией, космическое излучение способно за относительно короткий срок разложить на ионы и электроны весь воздух атмосферы, а следова­тельно, уничтожить жизнь на планете. Однако этого, к счастью, не происходит. Дело в том, что Земля представляет собой своеобразный магнит, его силовые линии окружают земной шар и образуют вокруг него магнитосферу , которая защищает живые организмы от солнеч­ного ветра. Однако некоторые частицы солнечной плазмы с высокой энергией могут проникать сквозь радиационные пояса и даже дости­гать биосферы.

Итак, магнитное поле есть важнейший защитник жизни на Зем­ле, без которого она не смогла бы зародиться в прошлом, не смогла бы сохраниться в настоящем. Но наряду с этим есть и другие факто­ры стабильности, порожденные самим живым веществом биосферы.

Важнейшим фактором возникновения и развития биосферы стало создание автотрофными организмами кис­лородной среды на Земли. С появлением такого химического активного элемента, как кислород в свободном, т.е. молекулярном состоянии, существенно изменились процессы минералообразования в поверх­ностных слоях геологической оболочки планеты, а следовательно, резко изменились и все химические факторы существования живого вещества. С другой стороны, наполнение атмосферы кислородом способствовало появлению в ней озона и формированию озонового слоя .

Образование озона в стратосфере связано с реакцией фотодиссоциа­ции поступающего туда молекулярного кислорода под воздействием уль­трафиолетового излучения Солнца. Основное количество озона сосредоточено в стратосфере на вы­сотах 15-25 км (верхняя граница его распространения - до 45 км), где он образует озоновый слой или озоносферу. Основная масса озо­на образуется в экваториальной зоне и распространяется затем атмос­ферными движениями к полюсам непосредственно. У поверхности Земли озон появляется только во время грозовых разрядов.

Расчеты показали, что если все содержащиеся в атмосфере моле­кулы озона равномерно распределить над поверхностью Земли, то толщина образовавшейся оболочки составит лишь около 3 мм. Несмотря на крайне низкое количественное содержание, этот газ имел и продолжает иметь неоценимое эколого-биологическое значе­ние, так как слой озона практически полностью поглощает поток ко­ротковолновых УФ-лучей Солнца с длиной волны 200-280 нм и около 90% ультрафиолетового излучения с длиной волны 280-320 нм. Та­ким образом, озоновый слой является охранным щитом от жесткого, короче 280 нм, УФ-излучения, крайне опасного для всего живого на планете. При этом наблюдения и расчеты ученых выявили, что если общее содержание озона сократится всего лишь на 10-20%, то на каж­дый процент такого сокращения придется приблизительно 2%-ное уве­личение потока в вышеуказанной полосе УФ-излучения.

Стабильность биосферы, помимо вышесказанного, в значительной степени основывается на высоком видовом разнообразии живых организмов , отдельные груп­пы которых выполняют различные функции в поддержании общего потока вещества и распределения энергии, на теснейшем переплете­нии и взаимосвязи биогенных и абиогенных процессов, на согласо­ванности циклов отдельных элементов и уравновешивании емкости отдельных экологических ниш. В биосфере действуют сложные системы об­ратных связей и зависимостей.

Итак, биосфера теснейшим образом связана с Космосом. Потоки космической энергии создают на Земле условия, обеспечивающие жизнь. При этом находящиеся за пределами биосферы магнитное поле Земли, возникшее задолго до появления жизни, а также озоновый экран, яв­ляющийся порождением живого вещества планеты, защищают жизнь на ней от губительного космического излучения и интенсивной солнечной радиации. С другой стороны, находясь, образно говоря, между моло­том и наковальней (снаружи - враждебный Космос, внутри Земли - огромное раскаленное ядро), жизнь активно ищет пути поддержания своего существования и развития. Отсюда следует вывод, что стабиль­ное состояние биосферы обусловлено в первую очередь деятельностью самого живого вещества, обеспечивающей определенную скорость фик­сации солнечной энергии и биогенной миграции атомов. Жизнь на пла­нете Земля сама стабилизирует и, согласно В.И. Вернадскому, «как бы само создает себе область жизни». Это закладывает основу для длитель­ного ее развития.

Здесь уместно привести принцип Ле Шателье-Брауна :при внеш­нем воздействии, выводящем экологическую систему из состояния ус­тойчивого равновесия, равновесие смещается в том направлении, при котором эффект внешнего воздействия ослабляется.

Однако стабильность биосферы имеет определенные пределы и нарушение ее регуляторных возможностей чревато серьезными по­следствиями. На это, в частности, указывает правило одного процен­та :изменение энергетики природной системы в среднем на 1% выводит последнюю из состояния гомеостаза (равновесия). Данное правило подтверждается исследованиями в области глобальной климатологии и других геофизических, а также биофизических процессов. Так, все крупные природные явления на поверхности Земли (извержения вул­канов, мощные циклоны, процесс глобального фотосинтеза и т.п.), как правило, имеют суммарную энергию, не превышающую 1% энер­гии солнечного излучения попадающего на поверхность Земли. Пе­реход энергетики процесса за это значение обычно приводит к рез­ким аномалиям - климатическим отклонениям, переменам в харак­тере растительности, крупным лесным и степным пожарам. Все это следует учитывать при планировании отдельных видов хо­зяйственной деятельности глобального масштаба.

Ноосфера

Венцом учения В.И. Вернадского о биосфере стало учение о ноосфере. Ноосфера («мыслящая оболочка», сфера разума) - выс­шая стадия развития биосферы. Это «сфера взаимодействия природы и общества, в пределах которой разумная человече­ская деятельность становится главным, определяющим фак­тором развития».

Почему возникло понятие «ноосфера»? Оно появилось в связи с оценкой роли человека в эволюции биосферы. Непре­ходящая ценность учения В. И. Вернадского о ноосфере именно в том, что он выявил геологическую роль жизни, живого ве­щества в планетарных процессах, в создании и развитии био­сферы и всего разнообразия живых существ в ней. Среди этих существ он выделил человекакак мощную геологическую силу . Эта сила способна оказывать влияние на ход биогеохи­мических и других процессов в охваченной ее воздействием среде Земли и околоземном пространстве (пока «ближний» Космос). Вся эта среда весьма существенно изменяется чело­веком благодаря его труду. Он способен перестроить ее со­гласно своим представлениям и потребностям, изменить фак­тически ту биосферу, которая складывалась в течение всей геологической истории Земли.

В. И. Вернадский писал, что становление ноосферы «есть не случайное явление на нашей планете», «создание свобод­ного разума», «человеческого гения», а «природное явление, резко материально проявляющееся в своих следствиях в окру­жающей человека среде». Иными словами, ноосфера - окружающая человека среда, в которой природные процессы обмена веществ и энергии кон­тролируются обществом.

Человек, по мнению В. И. Вернадского, является частью биосферы, ее «определенной функцией». Подчеркивая тесную связь человека и природы, он допускал, что предпосылки воз­никновения человеческого разума имели место еще во време­на животных, предшественников Homo sapiens, и проявление его началось миллионы лет назад, в конце третичного перио­да. Но как новая геологическая сила смог проявить себя толь­ко человек.

Воздействие человеческого общества как единого целого на природу по своему характеру резко отличается от воздей­ствий других форм живого вещества. В. И. Вернадский пи­сал: «Раньше организмы влияли на историю тех атомов, ко­торые были нужны им для роста, размножения, питания, ды­хания. Человек расширил этот круг, влияя на элементы, нуж­ные для техники и создания цивилизованных форм жизни», что и изменило «вечный бег геохимических циклов».

Эти гениальные мысли В. И. Вернадского позволили ря­ду ученых допустить в дальнейшем и такой ход событий в эволюции биосферы, как коэволюцию между человеческим обществом и природной средой, в результате чего и возник­нет ноосфера, но это будет происходить благодаря «новым фор­мам действия живого вещества на обмен атомов живого ве­щества с косной материей». Он считал, что «геологически мы переживаем сейчас выделение в биосфере царства разума, ме­няющего коренным образом и ее облик, и ее строение, - ноо­сферы».

Заключение

Анализируя представления В. И. Вернадского о ноосфере, надо отметить, что ломка развития человеческой деятельности должна идти не вопреки, а в унисон с организованностью биосферы, ибо человечество, образуя ноо­сферу, всеми своими корнями связано с биосферой. Ноосфе­ра - естественное и необходимое следствие человеческих уси­лий. Это преобразованная людьми биосфера соответственно по­знанным и практически освоенным законам ее строения и раз­вития. Рассматривая такое развитие биосферы в ноосферу с по­зиций системного подхода, можно заключить, что ноосфера - это новое состояние некоторой глобальной суперсистемы как совокупности трех мощных подсистем: «человек», «производ­ство» и «природа», как трех взаимосвязанных элементов при активной роли подсистемы «человек». Ста­новление ноосферы, по В. И. Вернадскому, - процесс длитель­ный, но ряд ученых полагают, что человечество уже вступило в период ноосферы, хотя многие считают, что пока об этом говорить рано, так как то, что сейчас происходит во взаимодей­ствии человека и природы, трудно увязать с наступлением эпо­хи разума. Тем не менее прогресс человеческого разума и науч­ной мысли ноосферы налицо: они вышли уже за пределы био­сферы Земли, в Космос и глубины литосферы. По мнению многих ученых - ноосфера в будущем станет особой областью Солнечной системы. «Био­сфера перейдет так или иначе, рано или поздно в ноосферу... На определенном этапе развития человек вынужден взять на себя ответственность за дальнейшую эволюцию планеты, ина­че у него не будет будущего», - утверждал В. И. Вернадский.

Литература

Бродский А.К. Краткий курс общей экологии: Учебное пособие.- СПб.: ДЕАН. 2000. 224 с.

Воронцов А.И. и др. Охрана природы: Учебники и учебные пособия для техникумов.- М.: Агропромиздат, 1989.- 303 с.

Гальперин М.В. Экологические основы природопользования: Учебник.- М.: ФОРУМ: ИНФРА-М, 2002. - 256 с.

Коробкин В. И., Передельский Л.В. Экология. изд. 6-е, доп. и переработ.- Ростов н/Д: изд-во «Феникс», 2000. - 576 с.

Радкевич В.А. Экология: Учебник. - Минск: Высшая школа, 1997.

Реймерс Н.Ф. Природопользование. - М.: Мысль, 1990.

Реймерс Н.Ф. Экология (теория, законы, правила, принципы и гипотезы). - М.: «Россия молодая», 1994.

Экология: Учебное пособие / Под ред. проф. В.В. Денисова. Серия «Учебный курс». - Ростов н/Д: Издательский центр «МарТ», 2002. - 640 с.