Флористика        04.03.2020   

Алмаз состоит из атомов. Формула алмаза и его основные характеристики. Разнообразие форм и размеров

Алмаз — самый твёрдый минерал, кубическая полиморфная (аллотропная) модификация углерода(C), устойчивая при высоком давлении. При атмосферном давлении и комнатной температуре метастабилен, но может существовать неограниченно долго, не превращаясь в стабильный в этих условиях графит. В вакууме или в инертном газе при повышенных температурах постепенно переходит в графит.

СТРУКТУРА

Сингония алмаза кубическая, пространственная группа Fd3m. Элементарная ячейка кристаллической решетки алмаза представляет собой гранецентрированный куб, в котором в четырех секторах расположенных в шахматном порядке, находятся атомы углерода. Иначе алмазную структуру можно представить как две кубических гранецентрированных решетки, смещенных друг относительно друга по главной диагонали куба на четверть её длины. Структура аналогичная алмазной установлена у кремния, низкотемпературной модификации олова и некоторых других простых веществ.

Кристаллы алмаза всегда содержат различные дефекты кристаллической структуры (точечные, линейные дефекты, включения, границы субзерен и тп.). Такие дефекты в значительной степени определяют физические свойства кристаллов.

СВОЙСТВА

Алмаз может быть бесцветными водянопрозрачным или окрашенным в различные оттенки желтого, коричневого, красного, голубого, зеленого, черного, серого цветов.
Распределение окраски часто неравномерное, пятнистое или зональное. Под действием рентгеновских, катодных и ультрафиолетовых лучей большинство алмазов начинает светиться (люминесцировать) голубым, зелёным, розовым и др. цветами. Характеризуется исключительно высоким светопреломлением. Показатель преломления (от 2,417 до 2,421) и сильная дисперсия (0,0574) обуславливают яркий блеск и разноцветную «игру» огранённых ювелирных алмазов, называемых бриллиантами. Блеск сильный, от алмазного до жирного.Плотность 3,5 г/см 3 . По шкале Мооса относительная твердость алмаза равна 10, а абсолютная — в 1000 раз превышает твёрдость кварца и в 150 раз — корунда. Она самая высокая как среди всех природных, так и искусственных материалов. Вместе с тем довольно хрупок, легко раскалывается. Излом раковистый. С кислотами и щелочами в отсутствие окислителей не взаимодействует.
На воздухе алмаз сгорает при 850° С с образованием СО 2 ; в вакууме при температуре свыше 1.500° С переходит в графит.

МОРФОЛОГИЯ

Морфология алмаза очень разнообразна. Он встречается как в виде монокристаллов, так и в виде поликристаллических срастаний («борт», «баллас», «карбонадо»). Алмазы из кимберлитовых месторождений имеют только одну распространенную плоскогранную форму — октаэдр. При этом во всех месторождениях распространены алмазы с характерными кривогранными формами — ромбододекаэдроиды (кристаллы похожие на ромбододекаэдр, но с округлыми гранями), и кубоиды (кристаллы с криволинейной формой). Как показали экспериментальные исследования и изучение природных образцов в большинстве случаев кристаллы в форме додекаэдроида возникают в результате растворения алмазов кимберлитовым расплавом. Кубоиды образуются в результате специфического волокнистого роста алмазов по нормальному механизму роста.

Синтетические кристаллы, выращенные при высоких давлениях и температурах, часто имеют грани куба и это является одни их характерных отличий от природных кристаллов. При выращивании в метастабильных условиях алмаз легко кристаллизуется в виде пленок и шестоватых агрегатов.

Размеры кристаллов варьируют от микроскопических до очень крупных, масса самого крупного алмаза «Куллинан», найденного в 1905г. в Южной Африке 3106 карат (0,621кг).
На изучение огромного алмаза было потрачено несколько месяцев и в 1908 году он был расколот на 9 крупных частей.
Алмазы массой более 15 карат — редкость, а массой от сотни карат — уникальны и считаются раритетами. Такие камни очень редки и часто получают собственные имена, мировую известность и своё особое место в истории.

ПРОИСХОЖДЕНИЕ

Хотя при нормальных условиях алмаз метастабилен, он в силу устойчивости своей кристаллической структуры может существовать неопределенно долго, не превращаясь в устойчивую модификацию углерода — графит. Алмазы, которые вынесены на поверхность кимберилитами или лампроитами кристаллизуется в мантии на глубине 200 км. и более при давлении более 4 Гпа и температуре 1000 — 1300 ° С. В некоторых меторождениях встречаются и более глубинные алмазы, вынесенные из переходной зоны или из нижней мантии. Наряду с этим, они выносятся к поверхности Земли в результате взрывных процессов, сопровождающих формирование кимберлитовых трубок, 15-20% которых содержит алмаз.

Алмазы встречаются также в метаморфических комплексах сверхвысоких давлений. Они ассоциируют с эклогитами и глубокометаморфизованными гранатовыми гнейсами. Мелкие алмазы в значительных количествах обнаружены в метеоритах. Они имеют очень древнее, досолнечное происхождение. Также они образуются в крупных астроблемах — гигантских метеоритных кратерах, где переплавленные породы содержат значительные количества мелкокристаллического алмаза. Известным месторождением такого типа является Попигайская астроблема на севере Сибири.

Алмазы редкий, но вместе с тем довольно широко распространённый минерал. Промышленные месторождения алмазов известны всех континентах, кроме Антарктиды. Известно несколько видов месторождений алмазов. Уже несколько тысяч лет алмазы добывались из россыпных месторождений. Только к концу XIX века, когда впервые были открыты алмазоносные кимберлитовая трубка, стало ясно, что алмазы не образуются в речных отложениях. Кроме этого алмазы были найдены в коровых породах в ассоциациях метаморфизма сверхвысоких давлений, например в Кокчетавском массиве в Казахстане.

И импактные, и метаморфические алмазы иногда образуют весьма масштабные месторождения, с большими запасами и высокой концентрацией. Но в этих типах месторождений алмазы настолько мелкие, что не имеют промышленной ценности. Промышленные месторождения алмазов связаны с кимберлитовыми и лампроитовыми трубками, приуроченными к древним кратонам. Основные месторождения этого типа известны в Африке, России, Австралии и Канаде.

ПРИМЕНЕНИЕ

Хорошие кристаллы подвергаются огранке и используются в ювелирном деле. Ювелирными считаются около 15% добываемых алмазов, еще 45% считаются околоювелирными, то есть уступают ювелирным по размеру, цвету или чистоте. В настоящее время общемировой объем добычи алмазов составляет порядка 130 миллионов карат в год.
Бриллиант (от франц. brillant — блестящий), — алмаз, которому посредством механической обработки (огранки) придана специальная форма, бриллиантовая огранка, максимально раскрывающая такие оптические свойства камня, как блеск и цветовая дисперсия.
Совсем мелкие алмазы и осколки, непригодные для огранки, идут в качестве абразива для изготовления алмазного инструмента, необходимого для обработки твёрдых материалов и огранки самих алмазов. Скрытокристаллическая разновидность алмаза чёрного или тёмно-серого цвета, образующая плотные или пористые агрегаты, носит название Карбонадо , обладает более высоким сопротивлением истиранию, чем у кристаллов алмаза и благодаря этому особенно ценится в промышленности.

Мелкие кристаллы также в больших количествах выращиваются искусственным путём. Синтетические алмазы получают из различных углеродсодержащих веществ, главным образом из графита, в спец. аппаратах при 1200-1600°С и давлениях 4,5-8,0 ГПа в присутствии Fe, Co, Сr, Мn или их сплавов. Они пригодны для использования только в технических целях.

Алмаз (англ. Diamond) — C

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.02-40
Dana (7-ое издание) 1.3.5.1
Dana (8-ое издание) 1.3.6.1
Hey’s CIM Ref. 1.24

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минерала бесцветный, желтовато-коричневый переходящий в жёлтый, коричневый, чёрный, синий, зелёный или красный, розовый, коньячно-коричневый, голубой, сиреневый (очень редко)
Цвет черты никакой
Прозрачность прозрачный, полупрозрачный, непрозрачный
Блеск алмазный, жирный
Спайность совершенная по октаэдру
Твердость (шкала Мооса) 10
Излом неровный
Прочность хрупкий
Плотность (измеренная) 3.5 — 3.53 g/cm3
Радиоактивность (GRapi) 0
Термические свойства Высокая теплопроводность. На ощупь холодный, поэтому алмаз называют на сленге «лед»

Большинство твёрдых веществ имеет кристаллическое строение, которое характеризуется строго определённым расположением частиц . Если соединить частицы условными линиями, то получится пространственный каркас, называемый кристаллической решёткой . Точки, в которых размещены частицы кристалла, называют узлами решётки . В узлах воображаемой решётки могут находиться атомы , ионы или молекулы .

В зависимости от природы частиц, расположенных в узлах, и характера связи между ними различают четыре типа кристаллических решёток: ионную , металлическую , атомную и молекулярную .

Ионными называют решётки, в узлах которых находятся ионы.

Их образуют вещества с ионной связью. В узлах такой решётки располагаются положительные и отрицательные ионы, связанные между собой электростатическим взаимодействием.

Ионные кристаллические решётки имеют соли , щёлочи , оксиды активных металлов . Ионы могут быть простые или сложные. Например, в узлах кристаллической решётки хлорида натрия находятся простые ионы натрия Na + и хлора Cl − , а в узлах решётки сульфата калия чередуются простые ионы калия K + и сложные сульфат-ионы S O 4 2 − .

Связи между ионами в таких кристаллах прочные. Поэтому ионные вещества твёрдые , тугоплавкие , нелетучие . Такие вещества хорошо растворяются в воде .

Кристаллическая решётка хлорида натрия

Кристалл хлорида натрия

Металлическими называют решётки, которые состоят из положительных ионов и атомов металла и свободных электронов.

Их образуют вещества с металлической связью. В узлах металлической решётки находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы, отдавая свои внешние электроны в общее пользование).

Такие кристаллические решётки характерны для простых веществ металлов и сплавов .

Температуры плавления металлов могут быть разными (от \(–37\) °С у ртути до двух-трёх тысяч градусов). Но все металлы имеют характерный металлический блеск , ковкость , пластичность , хорошо проводят электрический ток и тепло .

Металлическая кристаллическая решётка

Металлические изделия

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, соединённые ковалентными связями.

Такой тип решётки имеет алмаз - одно из аллотропных видоизменений углерода. К веществам с атомной кристаллической решёткой относятся графит , кремний , бор и германий , а также сложные вещества, например, карборунд SiC и кремнезём , кварц , горный хрусталь , песок , в состав которых входит оксид кремния(\(IV\)) Si O 2 .

Таким веществам характерны высокая прочность и твёрдость . Так, алмаз является самым твёрдым природным веществом. У веществ с атомной кристаллической решёткой очень высокие температуры плавления и кипения . Например, температура плавления кремнезёма - \(1728\) °С, а у графита она выше - \(4000\) °С. Атомные кристаллы практически нерастворимы .

Кристаллическая решётка алмаза

Алмаз

Молекулярными называют решётки, в узлах которых находятся молекулы, связанные слабым межмолекулярным взаимодействием.

Несмотря на то, что внутри молекул атомы соединены очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому молекулярные кристаллы имеют небольшую прочность и твёрдость , низкие температуры плавления и кипения . Многие молекулярные вещества при комнатной температуре представляют собой жидкости и газы . Такие вещества летучи . Например, кристаллические иод и твёрдый оксид углерода(\(IV\)) («сухой лёд») испаряются, не переходя в жидкое состояние. Некоторые молекулярные вещества имеют запах .

Такой тип решётки имеют простые вещества в твёрдом агрегатном состоянии: благородные газы с одноатомными молекулами (He , Ne , Ar , Kr , Xe , Rn ), а также неметаллы с двух- и многоатомными молекулами ( H 2 , O 2 , N 2 , Cl 2 , I 2 , O 3 , P 4 , S 8).

Молекулярную кристаллическую решётку имеют также вещества с ковалентными полярными связями: вода - лёд , твёрдые аммиак , кислоты , оксиды неметаллов . Большинство органических соединений тоже представляют собой молекулярные кристаллы (нафталин , сахар , глюкоза ).

Алмаз — самый твердый минерал в мире, являющийся аллотропной формой углерода. Ближайший родственник алмаза — графит, тот самый, из которого делают стержни для карандашей.

Название минерал получил от древнегреческого слова adamas, которое в переводе означает "несокрушимый".

Характеристики и виды

Алмазы — это минералы, к главным характеристикам которого можно отнести следующие:

Высочайшая твердость (10 баллов по шкале твердости Мооса );

Одновременно высокая хрупкость;

Самый высокий показатель теплопроводности среди твердых тел (900-2300 у.е)

Не проводит электрический ток;

Температура плавления — 4000ºC;

Температура сгорания — 1000 ºC;

Обладает люминесценцией.

Алмаз на 96-98% состоит из углерода. Остальное — примеси разных химических элементов, которые и придают оттенок минералу. Большинство природных алмазов имеют желтоватую и коричневатую окраску. В природе встречаются также синие, голубые, зеленые, красные и черные алмазы.

После обработки и огранки цветовой налет исчезает, поэтому подавляющая часть бриллиантов — бесцветные. Цветные бриллианты получаются крайне редко. Среди самых известных: Дрезденский (зеленый), бриллиант Тиффани (желтый) и Портер-Родс (голубой).

Один из методов определения подлинности алмаза довольно прост: по поверхности проводят линию особым фломастером, содержащим жирные чернила. Если линия остается сплошной, значит — алмаз настоящий. На поддельных линия рассыпается капельками.

Месторождения и добыча

(Невероятный по размерам карьер в котором очень долгое время добывались алмазы расположен в посёлке "Мир", Саха, Якутия )

Залежи алмазов обнаружены на всех континентах, кроме Антарктиды. В природе алмазы залегают в виде россыпей, но большая часть их содержится в кимберлитовых трубках. Кимберлитовые трубки — это своеобразные "дыры" в земной коре, которые образуются при взрыве газов. По оценкам специалистов именно в таких трубках содержится до 90% всех алмазов на земле.

Самые богатые залежи алмазов находятся в Ботсване, России, Канаде, Австралии и в ЮАР. Ежегодно в мире добывают более 130 млн. карат алмазов (около 30 тонн). Россия занимает первое место в мире по добыче алмазов (29% мировой добычи), уступая Ботсване лишь в стоимости найденных минералов.

В России первый алмаз был найден в 1829 году в Пермской области. Сейчас это месторождение называется "Алмазный ключик". Позднее обнаружились месторождения в Сибири и в Архангельской области. Крупнейшее месторождение находится на границе Красноярского края и Якутии. Предположительно здесь содержится около триллиона карат.

В 2015 на Камчатке открыто месторождение алмазов нового типа. Это так называемые "толбачинские" алмазы, которые обнаружили в застывшей лаве вулкана. Всего в нескольких пробах, взятых здесь, уже нашли несколько сотен алмазов.

Самый большой по размерам алмаз был найден в 1905 году в ЮАР. Называется он "Куллинан". Масса его 3106 карат. Из алмаза было получено 96 мелких и 9 крупных бриллиантов, самый огромный из которых — "Звезда Африки" (530 карат). Этот бриллиант сейчас украшает скипетр английских монархов и хранится в Тауэре.

В 1939 году русский физик О. Лейпунский впервые получил синтетический алмаз. А с 1963 года налажен серийный выпуск синтетических алмазов, которые широко применяют в технике и в ювелирном деле.

Применение алмазов

Подавляющая часть природных алмазов (до 70%) используется в ювелирном деле — для украшений. Почти 50% мировой добычи алмазов принадлежит компании "Де Бирс", которая и держит монополию, устанавливая высокие цены за 1 карат. В последнее время в лидеры выбивается российская компания "Алроса", ведущая разработки и добычу в 9-ти странах мира.

Применение в промышленности:

Для изготовления ножей, пил, резцов, буровых колонок, стеклорезов и т.п.;

В качестве абразива при изготовлении точильных станков, кругов;

В часовой промышленности;

В ядерной промышленности;

В оптике;

При изготовлении квантовых компьютеров;

При производстве микроэлектроники.

Химический элемент углерод (C) - один из самых важных в природе. Он входит в основные строительные соединения человеческой ДНК, имеет множество соединений с другими элементами. Получаемые в результате вещества используются во многих сферах жизни. Под давлением элемент имеет свойство перестраивать свою внутреннюю структуру, превращаясь сначала в графит, а при усилении воздействия образуется кристаллическая решётка алмаза.

Строение кристалла и способ образования

В химико-физическом смысле - это аллотропная разновидность химического элемента углерода . Имеет так называемую эталонную твёрдость в шкале Мооса - она равняется десяти и делает его самым прочным материалом на Земле. В естественных условиях на поверхности практически вечен, если находится долгое время в разреженной газовой среде, то возможно его превращение в графит.

Алмаз имеет кристаллическую решётку в форме куба. Являясь самым компактным видом взаимного расположения атомов вещества, именно она является причиной всех его свойств, относящихся к прочности.

Другие характеристики алмаза:

  • Хоть и твёрдый, но очень хрупок. Для того чтобы легко разрушить кристалл, достаточно одного резкого удара.
  • Имеет сравнительно высокую температуру плавления - около тысячи градусов Цельсия. Под давлением в десять гигапаскалей может выдерживать и втрое большие термические нагрузки.
  • Природный цвет - бледно-жёлтый. Если в составе присутствуют добавления железа или других естественных металлов, может иметь оранжевые, красные или даже зелёные оттенки.

Кубический тип кристаллической решётки алмаза состоит из 18 атомов углерода. Они сгруппированы по четыре, формируя правильные пирамиды с четырьмя вершинами - тетраэдры. Связаны между собой все эти структуры самым прочным видом связи между различными химическими соединениями - ковалентным. Это происходит из-за того, что сам кристалл в основном состоит из одноатомного вещества.

Способы применения вещества

Всевозможные пути использования алмаза обусловлены его прочностью и способностью преломлять свет. Его способностью хорошо поддаваться огранке уже давно используется в изготовлении красивейших ювелирных изделий. Основные отрасли производства , в которых используются эти кристаллы:

  • Квантовые компьютеры . Используются при построении вычислительных единиц, кубитов, которые одновременно являются и оперативной памятью, и процессором таких устройств. Для использования в качестве кубита алмаз должен быть «дефектным» - содержать в своей толще атом другого вещества. Тогда хранить информацию на таком кристалле можно с использованием электронов чужеродного вещества. С помощью их спинов можно не только записывать, но и обрабатывать блоки данных. В качестве таких атомов используются, как правило, азот или кремний.
  • Ядерная энергетика - отработанные в качестве замедлителей и облучённые радиоактивными изотопами графитовые стержни устаревших реакторов можно использовать в качестве вторичного топлива для более новых. Для этого стержни нагреваются, часть радиоактивных изотопов углерода высвобождается в газообразной форме и улавливается специальными датчиками. После этого такой газ прессуется в искусственные алмазы. Имея в радиоактивном состоянии некоторое значение электропроводимости, такие кристаллы впитывают ими же выпущенные гамма-лучи, являясь довольно эффективной формой топлива.
  • Промышленность - кристаллы алмазов используются для изготовления режущих инструментов, причём как при заточке новых средств обработки, так и при модернизации старых путём напыления на их кромку тонкой плёнки из алмазной пыли.

Самым распространённым является, конечно, применение огранённых алмазов - бриллиантов - в ювелирном деле. В зависимости от того, какой тип кристаллической решётки у алмаза, а так же от его размера и естественной формы получаются разные вариации огранки этого вещества. Тип изделия тоже накладывает свои ограничения на форму камня - например, круглая огранка применяется в кулонах, перстнях или ожерельях, тогда как фантазийная может использоваться для украшения подвесок или сережек.

При огранке исходный кусок теряет больше половины своей массы. Масса бриллиантов измеряется в каратах, равных одной пятой грамма или 200 миллиграммам. Типичный камень, поддающийся огранке, например, в Индии, очень мелкий, массой до трети карата.

Другие лидеры в сфере производства бриллиантов - Израиль, Соединённые Штаты, Россия, Украина - занимаются огранкой камней среднего и крупного размера. Всё зависит от оплаты труда специалистов этой области в конкретной стране.

Получение искусственных алмазов

В природе алмазные кристаллы получаются в результате действия на протяжении очень большого времени геологических процессов. Для того чтобы появился естественный кристалл, должно пройти несколько тысяч или даже миллионов лет. Вещество, которое превращается в него, должно быть на протяжении всего чудовищно длительного периода под чрезвычайно высоким давлением. Поэтому советскими учёными в конце 30-х годов XX века были сначала сформулированы оптимальные физические условия для получения искусственных алмазов.

Только почти через 15 лет, после большого количества неудачных попыток, в Швеции были синтезированы первые камни. К концу девяностых годов прошлого века был разработан и опробован ещё один метод - взрывной. Для этого использовалась углеродсодержащая взрывчатка. На месте её подрыва всегда можно было обнаружить некоторое количество алмазной пыли.

Создавать искусственные алмазы можно и с помощью ультразвука. Это очень дорогой и трудозатратный метод, который пока не применяется в широких производственных целях.

Основной метод создания камней - подвергание графитовых стержней одновременному воздействию высоких температуры и давления. Примерные характеристики установок:

  • Максимальная температура нагрева - 1500 градусов Цельсия.
  • Предельно возможное давление - 5 гигапаскалей.

Под прессом и воздействием нагрева кристаллическая решётка графита постепенно преобразуется из гексагональной (десятиугольной) в кубическую постепенным передвиганием атомов углерода внутрь вещества.

Несмотря на то что процесс очень энергозатратный, а установки, позволяющие проводить его, очень сложны в конструкции, около 95% всех алмазов, используемых в промышленных целях на производстве - искусственные.

Алмаз - минерал, который является не чем иным, как модификацией углерода. Чистый алмаз имеет формулу, состоящую всего из одного элемента. Камень обладает уникальными свойствами в природе, поэтому кристаллическая решетка алмаза заинтересовала ученых, и структура вещества продолжает изучаться.

Идеальный алмаз можно представить как гигантскую молекулу углерода. Состав минерала ученые изучили только в конце XVIII века. С того момента начались попытки искусственного синтеза алмаза в лабораториях, но они были бессмысленными, поскольку отстроить кристаллическую решетку с нуля не получалось.

Структура алмаза

А еще техника не была на таком уровне, чтоб создать условия для образования алмаза. Только в пятидесятых годах ХХ века ученые смогли синтезировать алмаз самостоятельно. Этим занимались такие страны, как СССР, США и ЮАР.

Строение вещества

Вся загвоздка и сложность производства заключалась в уникальной структуре алмаза. Между атомами в химии может сформироваться четыре типа связи:

  • ковалентная;
  • ионная;
  • металлическая;
  • водородная.

Самая прочная из них - ковалентная связь. Она также имеет свои подвиды: сигма-связи и пи-связи. Второй подвид менее прочный. В алмазе есть несколько миллионов атомов углерода, которые соединены между собой с помощью ковалентных связей.

Пространственное расположение атомов и их соединения называются кристаллической решеткой. Именно ее строение и обусловливает такую характеристику, как твердость вещества. Элементарная ячейка структуры алмаза выглядит как куб. То есть алмаз кристаллизуется в кубической сингонии, если пользоваться научной терминологией.

На вершинах этого куба находится по атому углерода. По одному атому располагается в каждой грани, а еще четыре - внутри куба. Центральные атомы в гранях являются общими для двух ячеек, а те, что находятся в вершинах куба, - общие для восьми ячеек. Между собой атомы соединены ковалентными сигма-связями.

Такая структура и упаковка считается наиболее плотной. Каждый атом углерода располагается в центре тетраэдра и связан по всем сторонам. Поскольку валентность углерода равняется четырем, то все связи оказываются перекрытыми, и взаимодействие с веществом со стороны невозможно.

Расстояние между атомами одинаковое, свободных электронов нет, поэтому минерал является хорошим диэлектриком. Твердость алмаза достигается именно благодаря такому строению. Эти характеристики, в свою очередь, и стали причиной широкого использования камней. Они применяются не только в ювелирном деле, но и в качестве абразива, а также покрытия для инструментов.

Но не все в природе идеально. Даже в алмазах часто встречаются примеси. Такая структура позволяет минералу выглядеть абсолютно прозрачным, без включений. Но добываемые камни не всегда обладают ювелирными свойствами из-за большого количества дефектов и примесей.

Кристалл алмаза может содержать такие вещества:

  • алюминий;
  • кальций;
  • магний;
  • гранит.

Иногда в составе встречается вода, углекислота или другие газы. Примеси в кристалле располагаются неравномерно и несколько нарушают кристаллическую структуру. Если дефекты располагаются на периферии, что происходит чаще, тогда с ними можно бороться с помощью огранки.

Аллотропные модификации

Не только алмаз имеет подобный тип строения кристаллической решетки. Другие элементы из четвертой группы также имеют похожую структуру. Но все дело в атомной массе. Атомы углерода располагаются на близком расстоянии друг от друга, что делает связи прочнее. А вот с увеличением атомной массы элементы располагаются дальше и прочность соединений между ними падает.

А также у углерода есть в природе аллотропные модификации, куда, кроме алмаза, входят и другие вещества:

  • графит;
  • лонсдейлит;
  • сажа, уголь;
  • фуллерены;
  • углеродные нанотрубки.

Ученых интересовала возможность превращения графита в алмаз. Сделать это можно только под действиями очень высокого давления и температуры.

Все дело в том, что графит отличается по пространственному расположению атомов и связям между ними. Если у алмаза все связи ковалентные-сигма, то пространственные связи графита - пи-соединения. А также в решетке графита остается несколько свободных электронов у атомов, которые перемещаясь, создают эффект электропроводности. Такая форма решетки называется гексагональной. Поэтому графит по шкале твердости имеет показатель единицу.

Лонсдейлиты еще не изучены окончательно, поскольку их добывают либо искусственно, либо из метеоритов, упавших на землю.

А вот фуллерены имеют кристаллическую решетку, напоминающую мяч, сложенный из восьмиугольников. По углам фигур расположены не атомы, а молекулы углерода. Эти вещества также продолжают исследовать.

Химический состав алмаза записывается формулой или элементом С.

Кроме показателя твердости - 10 из 10 по шкале Мооса - алмаз обладает такими характеристиками:

  • Плотность - 3,5 г/см3.
  • Камень довольно хрупкий. Несмотря на твердость, алмаз можно разрушить резким ударом.
  • Спайность. Плотность у вещества неравномерная. Камень раскалывается по параллельным граням кристалла. Спайность должна учитываться при огранке камня, поскольку расчет ювелира и последующий удар определяет плоскость скола и отсекает ненужные примеси.
  • Камень должен быть прозрачным. Тогда после огранки он будет играть на свету. Самые дорогие экземпляры называют алмазами чистой воды. Но все равно встречается до 5 % примесей в структуре, что искажает кристаллическую решетку, а иногда и портит вид камня.
  • Если воздействовать на камень рентгеновскими лучами, то прочность ковалентных связей нарушится. В результате решетка станет рыхлой и твердость вещества также снизится. Но после этой процедуры появится интересное свойство: камень будет излучать свет в синей и зеленой части спектра.

В природе добытый минерал имеет форму кристалла с разным количеством граней. Иногда добывают не полные камни, а только сколы от больших алмазов. Определить скол это или полноценный минерал можно, изучив строение кристаллической решётки. Грани минералов часто покрыты наростами и углублениями.

Цвет алмаза также отличается разнообразием. Встречаются желтые, красноватые или даже черные оттенки алмазов. Конечно, кристаллическая решетка у камней изменена. Но свойства от этого страдают не сильно. Такие минералы называют фантазийными. Их окраска может быть неравномерной и зависеть от примесей в структуре.

Идеальное строение существует только у искусственных алмазов. Производство этих камней требует затравки в виде натурального кристалла, а также большого количества денежных вложений и аппаратуры. Но именно изучение кристаллической решетки и повлияло на развитие этой отрасли.