Садовые         20.10.2023   

Для всех и обо всем. На сатурне и юпитере идут алмазные дожди На юпитере идут алмазные дожди

October 15th, 2013 , 09:13 pm

Согласно подсчетам американских ученых на Сатурне и Юпитере могут идти градом огромные алмазы.

По новым атмосферным данным газовых гигантов, углерод в своей кристаллической форме - не редкость на этих планетах. Более того, Юпитер и Сатурн содержат большие объемы этого вещества.

Разряды молний превращают метан в углерод, который во время падения твердеет, превращаясь через 1 600 км в глыбы графита (наподобие того, что мы используем в карандашах), а спустя еще 6 000 км эти глыбы становятся алмазами. Последние продолжают падать еще в течение 30 000 км.

Читайте также: На Уране и Нептуне есть алмазные океаны

В конце концов, алмазы достигают такой глубины, что высокие температуры горячих ядер планет просто плавят их и, возможно (хотя это пока нельзя утверждать) создается море жидкого углерода, сообщили на конференции ученые.

Самые большие алмазы имеют диаметр примерно 1 см , сообщил Доктор Кевин Бэйнс (Dr Kevin Baines) из Висконсинского университета в Мадисоне (University of Wisconsin-Madison) и Лаборатория Реактивного Движения НАСА (Nasa"s Jet Propulsion Laboratory).

За 1 год на Сатурне создаются более 1 000 тон алмазов .

Вместе со своим соавтором Моной Делинцки (Mona Delitsky) Бэйнс обнародовал пока еще не опубликованную находку на ежегодном собрании Отделения Американского астрономического общества в области планетарных наук в Денвере, штат Колорадо.

Юпитер и Сатурн

Бэенс и Делинцки проанализировали последние прогнозы по температуре и давлению внутри Юпитера и Сатурна, а также новую информацию о поведении углерода в разных условиях.

Они пришли к выводу, что кристаллы алмаза падают особенно много на Сатурне , где в итоге плавятся из-за высокой температуры ядра.

На Юпитере и Сатурне алмазы не вечны, чего нельзя сказать об Уране и Нептуне , у которых довольно низкие температуры ядер.

Данные еще будут проверены, но пока сторонние специалисты по изучению планет говорят о том, что нельзя исключать возможность алмазного дождя .

Где находят алмазы на Земле

Алмазы, так же как и другие драгоценные камни находят в тех частях Земли, где для их образования существуют необходимые условия.

Месторождение алмазов нуждается в присутствии определенных веществ и явлений, включая углерод, температуру, давление и большое количество времени.

Если человек когда-нибудь доберётся до крупнейших планет Солнечной системы — Юпитера и Сатурна, то собственными глазами сможет увидеть "небо в алмазах". Согласно последним исследованиям планетологов, на газовых гигантах идут алмазные дожди.

Исследователи инопланетных миров давно задаются вопросом: может ли высокое давление внутри гигантских планет ? Планетологи Мона Делитски (Mona Delitsky) из калифорнийской компании Specialty Engineering и Кевин Бейнс (Kevin Baines) из университета Висконсина в Мэдисоне подтвердили давние предположения своих коллег.

Согласно модели, построенной по наблюдениям астрофизиков, когда разряд молнии появляется в верхних слоях атмосферы газовых гигантов и затрагивает молекулы метана, то высвобождаются атомы углерода. Эти атомы в большом количестве соединяются друг с другом, после чего начинают длительное путешествие к каменному ядру планеты. Эти "сборища" атомов углерода представляют собой довольно массивные частицы, то есть по сути представляют собой сажу. Вероятнее всего, именно их увидел аппарат "Кассини" .

Частицы сажи медленно спускаются к центру планеты, минуя последовательно все слои её атмосферы. Чем дальше они проходят сквозь слои газообразного и жидкого водорода к ядру, тем большее давление и нагрев испытывают. Постепенно сажа сжимается до состояния графита , а затем преобразуется в ультраплотные алмазы. Но на этом испытания не заканчиваются, инопланетные драгоценные камни нагреваются до температуры 8 тысяч градусов по Цельсию (то есть достигают температуры плавления) и падают на поверхность ядра в виде жидких алмазных капель.

"Внутри Сатурна наблюдаются подходящие условия для града из алмазов. Наиболее благоприятная зона находится на отрезке, начиная с глубины в шесть тысяч километров и заканчивая глубиной в 30 тысяч километров. По нашим расчётам Сатурн может содержать до 10 миллионов тонн этих драгоценных камней, при этом большинство из них не более миллиметра в диаметре, но есть и образцы диаметром около 10 сантиметров", — говорит Бейнс.

В связи с новым открытием планетологи предложили интересную идею: на Сатурн можно отправить робота, который будет собирать капли "драгоценного" дождя. Интересно, что это исследование является своеобразным повторение сюжета научно-фантастической книги "Инопланетные моря" (Alien Seas), согласно которому в 2469 году на Сатурне будут собирать алмазы для строительства корпуса добывающего судна, которое отправится к ядру планеты и будет собирать гелий-3 , необходимый для создания термоядерного топлива.

Мысль заманчивая, но учёные предупреждают: алмазы стоит оставить на Сатурне, чтобы предотвратить финансовый хаос на Земле.

Делитски и Бейнс заключили, что алмазы будут оставаться стабильными внутри гигантских планет. К такому выводу они пришли в результате сравнительного анализа последних астрофизических исследований. Эти работы экспериментально подтвердили конкретные температуры и уровень давления, при которых углерод принимает различные аллотропные модификации , такие как твёрдый алмаз. Для этого учёные моделировали условия (прежде всего температуру и давление) в разных слоях атмосфер гигантских планет.

"Мы собрали результаты нескольких исследований и пришли к выводу, что алмазы действительно могут падать с небес Юпитера и Сатурна", — утверждает Делитски.

Необходимо учитывать, что до тех пор, пока некое открытие не подтвердится результатами наблюдений или экспериментов, оно так и останется на уровне гипотезы. Пока модели формирования алмазных капель на газовых гигантах ничто не противоречит. Однако коллеги Бейнса и Делитски высказали свои сомнения о правдоподобности описанной ныне модели.

Так, Дэвид Стивенсон (David Stevenson), планетолог из Калифорнийского технологического института, утверждает, что Бейнс и Делитски неверно использовали в своих расчётах законы термодинамики.

"Метан составляет очень малую долю водородной атмосферы Юпитера и Сатурна — 0,2% и 0,5% соответственно. Думаю, там происходит процесс, похожий на растворение в воде соли и сахара при высоких температурах. Даже если бы вы напрямую создали углеродную пыль и поместили её в верхние слои атмосферы Сатурна, то она бы попросту растворилась во всех этих слоях, стремительно опускаясь к ядру планеты", — утверждает Стивенсон, не принимавший участия в исследовании.

Похожей работой занимался несколько лет назад физик Лука Гирингелли (Luca Ghiringhelli) из Института имени Фрица Габера. К выводам Бейнса и Делитски он также отнёсся скептически. В своей работе он исследовал Нептун и Уран, которые намного богаче углеродом, чем Сатурн и Юпитер, но даже их углерода недостаточно для формирования кристаллов атом за атомом.

Коллеги Бейнса и Делитски советуют им продолжить своё исследование, дополнив модель большим количеством реальных данных и результатами наблюдений.

Доклад об открытии Делитски и Бейнса () прозвучал на заседании Отделения Американского астрономического общества в области планетарных наук (AAS Division for Planetary Sciences), которое проходит в Денвере с 6 по 11 октября 2013 года.

Выражение «небо в алмазах» может оказаться не просто иносказанием, считают ученые. Планетологи Мона Делитски и Кевин Бейнс представили аргументы в пользу того, что высокое давление внутри планет-гигантов может превратить углерод в алмаз.

Согласно предложенному сценарию, молнии в верхних слоях атмосферы газовых гигантов разбивают молекулы метана, высвобождая углерод, который собирается в частицы сажи. Космический аппарат Cassini заметил такие частицы внутри грозовых облаков Сатурна. Углерод, погружающийся все глубже в атмосферу планеты, минует уплотняющиеся слои газообразного и жидкого водорода и приближается к твердому ядру планеты, подвергаясь все большему давлению. Сажа превращается в графит, а затем – в алмаз. При температуре около 8 000 °С алмаз плавится, образуя капли.

На Сатурне, начиная от 6000 км от внешней границы атмосферы и еще на 30 000 км вглубь, есть все условия для алмазного «града», говорит Бейнс. По его оценкам, на Сатурне может быть около 10 млн тонн алмазов, сформировавшихся таким образом, причем большинство из них не крупнее 1 мм в поперечнике. Однако могут встречаться и настоящие «булыжники» – алмазы величиной до 10 см.

Предположения ученых основываются на экспериментальных данных, описывающих фазовые превращения углерода, и моделировании условий внутри атмосфер газовых гигантов. «Мы собрали информацию из различных источников и сделали вывод, что алмазы могут существовать в глубине атмосфер Сатурна и Юпитера», говорит Делитски.

Однако у Бейнса и Делитски есть оппоненты, которые приводят вполне весомые возражения. Планетолог Дэвид Стивенсон говорит, что в подобных системах нельзя пренебрегать термодинамикой. Доля метана в атмосферах Сатурна и Юпитера, состоящих преимущественно из водорода, очень мала – 0,2% и 0,5% соответственно. Термодинамика систем с таким разбавлением, по мнению Стивенсона, будет способствовать растворению. Как пара кристалликов сахара или соли в стакане воды, сажа скорее растворится в атмосфере планеты, чем опустится до тех глубин, где сможет превратиться в алмаз.

Физик Лука Гирингелли, занимавшийся моделированием подобных процессов для Урана и Нептуна, также скептически относится к представленным данным. Он показал, что концентрация углерода на этих планетах (кстати, в несколько раз более богатых этим элементом, чем Сатурн и Юпитер) недостаточна, чтобы построить алмаз «с нуля», атом за атомом. Конечно, появление алмаза из уж сформировавшихся хлопьев сажи – совсем не тот же самый процесс, но Гирингелли говорит, что говорить об «алмазных дождях» на Сатурне несколько преждевременно.

Что ж, финансисты пока могут не беспокоиться: в ближайшие столетия инопланетные алмазы вряд ли обрушат наши земные рынки.

На самом деле ученые давно предполагали, что внутри ледяных гигантов могут идти дожди из драгоценных камней. Глубоко внутри этих планет высокие температуры и сильное давление оказывали воздействие на углеводороды, в следствие чего шел алмазный дождь.

Конечно, для нас это явление может казаться фантастическим, однако далеко за пределами Земли – это вполне нормальное явление. Для того, чтобы подтвердить или опровергнуть данную информацию деятели науки воссоздали данный процесс у себя в лабораториях. Теперь доказано, что алмазные дожди – это реальное явление.

В Солнечной системе есть отдаленные планеты, которые называют ледяными гигантами, люди именовали их как Нептун и Уран. Они соответственно в 17 и 15 раз больше массы Земли. На этих планетах есть атмосферы, которые богаты газами, включая водород и гелий, также они имеют твердые ядра.

Нептун и Уран в основном представляют собой огромные океаны, они никоим образом не похожи на те океаны, которые находятся на нашей планете. Океаны на ледяных гигантах состоят из аммиака и веществ, известных как углеводороды – молекулы, такие как метан, состоящие из водорода и углерода.

Далеко в глубине этих планет происходят невероятные вещи: очень высокая температура, и сильное давление производят воздействие непосредственно на углеводороды. В следствии таких процессов возникают алмазы, которые в последствии выпадают в виде алмазных дождей.

Основываясь на химических процессах, которые проходят на Нептуне и Уране ученые смогли произвести в своей лаборатории небольшие алмазы. Воссоздав имитационные условия, исследователи подробно изучили структуру полученного материала.

Напомним, что ученые давно начали изучать и испытывать различные методы, которые могли бы сконструировать нужную обстановку. Многие отмечают, что лазеры также использовались, но все предыдущие разработки были провальными. Авторы победного проекта говорят, что ранние версии были обречены на неудачу. Так как те, кто применял похожую технологию использовали давление намного ниже тех, которые были предсказаны для необходимых условий в ледовых гигантах.

Исследователи имитируют условия Нептуна и Урана для создания алмазов в лаборатории

Лазер использовался для того, чтобы быстро нагревать поверхности еще одного элемента исследования – полистирола. Этот процесс сопутствовал его расширению и образованию ударной волны. Команда, которая работала над экспериментом, выпустила две ударные волны, при этом вторая была быстрее первой.

Завершение процесса образования камней происходило тогда, когда ударные волны догоняли друг друга. Следовательно, были получены температуры и давления около 5000 К и 150 ГПа соответственно. Подобные условия были похожи на те, которые обнаружили на глубине 10 000 км в ледяных планетах.

Созданных условий стало достаточно, чтобы в полистироле вызвать разрыв связей между углеродом и водородом. Затем углерод соединялся и создавал долгожданные алмазы. Научная команда также смогла понаблюдать за процессом формирования алмазов, для этого они использовали короткие импульсы рентгеновских лучей.

Доминик Краус, первый автор исследований в немецкой лаборатории Гельмгольц-Центр Дрезден-Россендорф отметил, что само экспериментальное время занимает очень короткий промежуток времени. В связи с этим, является практически фантастикой, что команде удалось понаблюдать за всем процессом формирования алмазов.

Драгоценности, которые создали ученые, достигали размера всего несколько нанометров в диаметре, однако процессы на Нептуне и Уране производят камни значительно больше. На ледяных гигантах создаются все условия для того, чтобы алмазы могли расти, и этот процесс может длится миллионы лет.

Исследователи подтвердили возможность смещения алмазов во внутрь планеты. Теперь планируется новое исследование, которое поможет узнать, какой характер размещения предлагаемых слоев алмазного дождя в структуре планет. Вследствие можно будет подтвердить или опровергнуть информацию касаемо температуры гигантов.

Краус отметил, что драгоценные камни опускаются из-за того, что они тяжелее, чем вещество окружающее их. В какой-то момент перемещения алмазы останавливаются, это происходит тогда, когда они достигают ядра, потом они начинают нагреваться.

Исследование, в котором подробно описывается этот эксперимент имеет название «Формирование алмазов в лазерно-сжатых углеводородах при планетарных внутренних условиях », оно недавно было опубликовано в журнале Nature Astronomy.

В состав команды ученых входили члены Национальной лаборатории Лоуренса Ливермора, SLAC Национальной ускорительной лаборатории и Калифорнийского университета в Беркли.

Вывод

Проведенный эксперимент открыл новые возможности для создания синтетических материалов. На данный момент наноалмазы получают множество коммерческих предложений. Их применение будет полезным в медицине, электронике, научном оборудовании и т.п. Методы, на основе которых создаются алмазы в данный момент менее экологические и безопасные, поэтому использование лазера может изменить алгоритм производства алмазов.

Согласно последним исследованиям двух планетологов, на Юпитере и Сатурне могут действительно идти алмазные дожди.

Астрономы давно задавались вопросом, могут ли высокие давления внутри планет-гигантов превратить углерод в алмаз, и хотя некоторые оспаривают такую возможность, американские ученые утверждают, что это возможно.

По их последним предположениям, в верхних слоях атмосфер Юпитера и Сатурна молнии расщепляют молекулы метана, высвобождая таким образом атомы углерода. Эти атомы могут затем сталкиваться друг с другом и формировать более крупные частицы углеродной сажи, которые могут быть обнаружены аппаратом «Кассини» в темных грозовых облаках Сатурна. Когда частицы сажи медленно опускаются через слои газообразного и жидкого водорода к твердому каменному ядру планеты, они испытывают действие все больших температур и давлений. Сажа превращается сначала в графит, а затем в твердые алмазы. Когда температура достигает 8000 °С, алмазы плавятся, превращаясь в жидкие дождевые капли.

Условия внутри Сатурна таковы, что область алмазного «града» начинается на глубине около 6000 км в атмосфере и простирается еще на 30000 км вглубь. Сатурн может содержать около 10 млн. тонн алмазов, сформированных таким способом. Большую часть составляют куски размером от миллиметра до, возможно, 10 сантиметров.

Планетологи пришли к заключению об устойчивости алмазов в недрах планет-гигантов, сравнивая недавние исследования физических условий, при которых углерод изменяет свою структуру, с моделированием изменения температуры и давления с глубиной для планет-гигантов. Тем не менее, многие ученые оспаривают данный вывод. В качестве контраргумента приводится тот факт, что метан составляет очень малую часть преимущественно водородных атмосфер Юпитера и Сатурна – всего 0.2% и 0.5% соответственно. В таких системах «термодинамика предпочитает смеси». Это означает, что даже если углеродной пыли из сажи удастся сформироваться, при своем падении в более глубокие слои она очень быстро растворится.

Когда звезда главной последовательности находится на конечном этапе своей эволюции, то в ядре прекращается реакция превращения водорода в гелий, звезда начинает остывать. Дальнейшая судьба звезды напрямую зависит от ее массы....

Титан, крупнейший спутник Сатурна, является самым далеким небесным телом, к которому прилетел гость с Земли. Эта планета заслуживает особого интереса со стороны ученых, так как имеет сложную атмосферу и озера жидких углеводородов на поверхности, а...

При помощи космического научного зонда «Кассини» впервые удалось получить снимок облака, недавно образовавшегося над южным полюсом спутника Сатурна Титана. Подобное атмосферное явление говорит о смене сезонов, статья об этом размещена на официальном...