Комнатные растения        03.08.2019   

Внутренняя энергия. Способы изменения внутренней энергии

Внутренняя энергия тела зависит от средней кинетической энергии его молекул, а эта энергия, в свою очередь, зависит от температуры. Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию. При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается.

Проделаем опыт. Укрепим на подставке тонкостенную латунную трубку. Нальем в нее немного эфира и плотно закроем пробкой. Теперь обовьем трубку веревкой и начнем натирать ею трубку, быстро вытягивая веревку то в одну, то в другую сторону. Через некоторое время внутренняя энергия трубки с эфиром возрастет настолько, что эфир закипит и образовавшийся пар вытолкнет пробку (рис. 60).

Этот опыт показывает, что внутреннюю энергию тела можно изменить путем совершения над телом работы, в частности трением.

Изменяя внутреннюю энергию куска дерева путем трения, наши предки добывали огонь. Температура воспламенения дерева равна 250 °С. Поэтому, чтобы получить огонь, нужно тереть одним куском дерева по другому до тех пор, пока их температура не достигнет этого значения. Легко ли это? Когда таким способом попробовали добыть огонь герои романа Жюля Верна «Таинственный остров», у них ничего не вышло.

«Если бы энергию, которую затратили Наб с Пенкрофом, можно было превратить в тепло, ее, наверное, хватило бы для отопления котла океанского парохода. Но результат их усилий равнялся нулю. Куски дерева, правда, разогрелись, но значительно меньше, чем сами участники этой операции.

После часа работы Пенкроф был весь в поту и с досадой отбросил куски дерева, сказав:
- Не говорите мне, что дикари добывают огонь таким образом! Я скорее поверю, что летом идет снег. Легче, пожалуй, зажечь собственные ладони, потирая их одну о другую».

Причина их неудачи заключалась в том, что огонь следовало добывать не простым трением одного куска дерева о другой, а сверлением дощечки заостренной палочкой (рис. 61). Тогда при определенной сноровке можно за 1 с увеличить температуру в гнезде палочки на 20 °С. А чтобы довести палочку до горения, потребуется всего лишь 250/20=12,5 секунды!

Многие люди и в наше время «добывают» огонь трением - трением спичек о спичечный коробок. Давно ли появились спички? Производство первых (фосфорных) спичек началось в 30-х гг. XIX в. Фосфор загорается при достаточно слабом нагревании - всего до 60 °С. Поэтому, чтобы зажечь фосфорную спичку, достаточно было чиркнуть ею практически о любую поверхность (начиная от ближайшей стены и кончая голенищем сапог). Однако эти спички были очень опасны: они были ядовиты и из-за легкого возгорания часто служили причиной пожара. Безопасные спички (которыми мы пользуемся до сих пор) были изобретены в 1855 г. в Швеции (отсюда их название «шведские спички») Фосфор в этих спичках заменен другими горючими веществами.

Итак, путем трения можно повысить температуру вещества. Совершая над телом работу (например, ударяя по куску свинца молотком, сгибая и разгибая проволоку, перемещая один предмет по поверхности другого или сжимая газ, находящийся в цилиндре с поршнем), мы увеличиваем его внутреннюю энергию. Если же тело само совершает работу (за счет своей внутренней энергии), то внутренняя энергия тела уменьшается и тело охлаждается.

Пронаблюдаем это на опыте. Возьмем толстостенный стеклянный сосуд и плотно закроем его резиновой пробкой с отверстием. Через это отверстие с помощью насоса начнем накачивать в сосуд воздух. Через некоторое время пробка с шумом вылетит из сосуда, а в самом сосуде появится туман (рис. 62). Появление тумана означает, что воздух в сосуде стал холоднее и, следовательно, его внутренняя энергия уменьшилась. Объясняется это тем, что находившийся в сосуде сжатый воздух, выталкивая пробку, совершил работу за счет уменьшения своей внутренней энергии. Поэтому температура воздуха и понизилась.
Внутреннюю энергию тела можно изменить и без совершения работы. Так, например, ее можно увеличить, нагрев на плите чайник с водой или опустив ложку в стакан с горячим чаем. Нагревается камин, в котором разведен огонь, крыша дома, освещаемая солнцем, и т. д.

Повышение температуры тел во всех этих случаях означает увеличение их внутренней энергии, но это увеличение происходит без совершения работы.

Изменение внутренней энергии тела без совершения работы называется теплообменом. Теплообмен возникает между телами (или частями одного и того же тела), имеющими разную температуру.

Как, например, происходит теплообмен при контакте холодной ложки с горячей водой? Сначала средняя скорость и кинетическая энергия молекул горячей воды превышают среднюю скорость и кинетическую энергию частиц металла, из которого изготовлена ложка. Но в тех местах, где ложка соприкасается с водой, молекулы горячей воды начинают передавать часть своей кинетической энергии частицам ложки, и те начинают двигаться быстрее. Кинетическая энергия молекул воды при этом уменьшается, а кинетическая энергия частиц ложки увеличивается. Вместе с энергией изменяется и температура: вода постепенно остывает, а ложка нагревается. Изменение их температуры происходит до тех пор, пока она и у воды, и у ложки не станет одинаковой.

Часть внутренней энергии, переданной от одного тела к другому при теплообмене, обозначают буквой Q и называют количеством теплоты.

Q - количество теплоты.

Количество теплоты не следует путать с температурой. Температура измеряется в градусах, а количество теплоты (как и любая другая энергия) - в джоулях.

При контакте тел с разной температурой более горячее тело отдает некоторое количество теплоты, а более холодное тело его получает.

Итак, существуют два способа изменения внутренней энергии: 1) совершение работы и 2) теплообмен. При осуществлении первого из этих способов внутренняя энергия тела изменяется на величину совершенной работы А, а при осуществлении второго из них - на величину, равную количеству переданной теплоты Q.

Интересно, что оба рассмотренных способа могут приводить к совершенно одинаковым результатам. Поэтому по конечному результату невозможно определить, каким именно из этих способов он достигнут. Так, взяв со стола нагретую стальную спицу, мы не сможем сказать, каким способом ее нагрели - путем трения или соприкосновения с горячим телом. В принципе могло быть как то, так и другое.

1. Назовите два способа изменения внутренней энергии тела. 2. Приведите примеры увеличения внутренней энергии тела путем совершения над ним работы. 3. Приведите примеры увеличения и уменьшения внутренней энергии тела в результате теплообмена. 4. Что такое количество теплоты? Как оно обозначается? 5. В каких единицах измеряется количество теплоты? 6. Какими способами можно добыть огонь? 7. Когда началось производство спичек?

Экспериментальное задание . Прижмите монету или кусочек фольги к картону или какой-либо дощечке. Сделав сначала 10, затем 20 и т. д. движений то в одну, то в другую сторону, заметьте, что происходит с температурой тел в процессе трения. Как зависит изменение внутренней энергии тела от величины совершенной работы?

Внутреннюю энергию можно изменить двумя способами.

Если работа совершается над телом, его внутренняя энергия увеличивается.

Вну́тренняя эне́ргия тела (обозначается как E или U) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

Температура, измеренная в кельвинах

Энтропия, измеренная в джоулях/кельвин

Давление, измеренное в паскалях

Химический потенциал

Количество частиц в систем

Теплота сгорания топлива. Условное топливо. Количество воздуха необходимое для горения топлива.

О качестве топлива судят по его теплоте сгорания. Для характеристики твердых и жидких видов топлива служит показатель удельной теплоты сгорания, который представляет собой количество теплоты, выделяемое при полном сгорании единицы массы (кДж/кг). Для газообразных видов топлива применяется показатель объемной теплоты сгорания, представляющий собой количество теплоты выделяемое при сгорании единицы объема (кДж/м3). Кроме того, газообразное топливо в ряде случаев оценивают по количеству теплоты, выделяемой при полном сгорании одного моля газ (кДж/моль).

Теплоту сгорания определяют не только теоретически, но и опытным путем, сжигая определенное количество топлива в специальных приборах, называемых калориметрами. Теплоту сгорания оценивают по повышению температуры воды в колориметре. Результаты, полученные этим методом, близки к значениям, рассчитанным по элементарному составу топлива.

Вопрос 14 Изменение внутренней энергии при нагревании и охлаждении. Работа газа при изменении обьема.

Внутренняя энергия тела зависит от средней кинетической энергии его молекул, а эта энергия, в свою очередь, зависит от температуры. Поэтому, изменяя температуру тела, мы изменяем и его внутреннюю энергию.При нагревании тела его внутренняя энергия увеличивается, при охлаждении уменьшается.

Внутреннюю энергию тела можно изменить и без совершения работы. Так, например, ее можно увеличить, нагрев на плите чайник с водой или опустив ложку в стакан с горячим чаем. Нагревается камин, в котором разведен огонь, крыша дома, освещаемая солнцем, и т. д. Повышение температуры тел во всех этих случаях означает увеличение их внутренней энергии, но это увеличение происходит без совершения работы.

Изменение внутренней энергии тела без совершения работы называется теплообменом. Теплообмен возникает между телами (или частями одного и того же тела), имеющими разную температуру.

Как, например, происходит теплообмен при контакте холодной ложки с горячей водой? Сначала средняя скорость и кинетическая энергия молекул горячей воды превышают среднюю скорость и кинетическую энергию частиц металла, из которого изготовлена ложка. Но в тех местах, где ложка соприкасается с водой, молекулы горячей воды начинают передавать часть своей кинетической энергии частицам ложки, и те начинают двигаться быстрее. Кинетическая энергия молекул воды при этом уменьшается, а кинетическая энергия частиц ложки увеличивается. Вместе с энергией изменяется и температура: вода постепенно остывает, а ложка нагревается. Изменение их температуры происходит до тех пор, пока она и у воды, и у ложки не станет одинаковой.

Часть внутренней энергии, переданной от одного тела к другому при теплообмене, обозначают буквой и называютколичеством теплоты.

Q - количество теплоты.

Количество теплоты не следует путать с температурой. Температура измеряется в градусах, а количество теплоты (как и любая другая энергия) - в джоулях.

При контакте тел с разной температурой более горячее тело отдает некоторое количество теплоты, а более холодное тело его получает.

Работа при изобарном расширении газа. Одним из основных термодинамических процессов, совершающихся в большинстве тепловых машин, является процесс расширения газа с совершением работы. Легко определить работу, совершаемую при изобарном расширении газа.

Если при изобарном расширении газа от объема V1 до объема V2 происходит перемещение поршня в цилиндре на расстояние l (рис. 106), то работа A", совершенная газом, равна

Где p - давление газа, - изменение его объема.

Работа при произвольном процессе расширения газа. Произвольный процесс расширения газа от объема V1 до объема V2 можно представить как совокупность чередующихся изобарных и изохорных процессов.

Работа при изотермическом расширении газа . Сравнивая площади фигур под участками изотермы и изобары, можно сделать вывод, что расширение газа от объема V1 до объема V2 при одинаковом начальном значении давления газа сопровождается в случае изобарного расширения совершением большей работы.

Работа при сжатии газа. При расширении газа направление вектора силы давления газа совпадает с направлением вектора перемещения, поэтому работа A", совершенная газом, положительна (A" > 0), а работа А внешних сил отрицательна: A = -A" < 0.

При сжатии газа направление вектора внешней силы совпадает с направлением перемещения, поэтому работа А внешних сил положительна (A > 0), а работа A", совершенная газом, отрицательна (A" < 0).

Адиабатный процесс . Кроме изобарного, изохорного и изотермического процессов, в термодинамике часто рассматриваются адиабатные процессы.

Адиабатным процессом называется процесс, происходящий в термодинамической системе при отсутствии теплообмена с окружающими телами, т. е. при условии Q = 0.

Вопрос 15 Условия равновесия тела. Момент силы. Виды равновесия.

Равновесие, или баланс, некоторого числа связанных явлений в естественных и гуманитарных науках.

Система считается находящейся в положении равновесия, если все воздействия на эту систему компенсируются другими или отсутствуют вообще. Сходное понятие - устойчивость. Равновесие может быть устойчивым, неустойчивым или безразличным.

Характерные примеры равновесия:

1. Механическое равновесие, также известно как статическое равновесие, - состояние тела, находящегося в покое, или движущегося равномерно, в котором сумма сил и моментов, действующих на него, равна нулю.

2. Химическое равновесие - положение, в котором химическая реакция протекает в той же степени, как и обратная реакция, и в результате не происходит изменения количества каждого компонента.

3. Физический баланс людей и животных, который поддерживается за счёт понимания его необходимости и в некоторых случаях - при помощи искусственного поддержания этого баланса[источник не указан 948 дней].

4. Термодинамическое равновесие - состояние системы, в котором его внутренние процессы не приводят к изменениям макроскопических параметров (таких, как температура и давление).

Р авенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия . В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное. Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления.

Общее условие равновесия тела . Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

Вопрос 16 Парообразование и конденсация. Испарение. Кипение жидкости. Зависимость кипения жидкости от давления.

Парообразование - свойство капельных жидкостей изменять свое агрегатное состояние и превращаться в пар. Парообразование, происходящее лишь на поверхности капельной жидкости, называется испарением. Парообразование по всему объему жидкости называется кипением; оно происходит при определенной температуре, зависящей от давления. Давление, при котором жидкость закипает при данной температуре, называется давлением насыщенных паров pнп, его значение зависит от рода жидкости и ее температуры.

Испаре́ние - процесс перехода вещества из жидкого состояния в газообразное (пар). Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое. Испарение(парообразование), переход вещества из конденсированной (твердой или жидкой) фазы в газообразную (пар); фазовый переход первого рода.

Конденсация – это процесс, обратный процессу испарения. При конденсации молекулы пара возвращаются в жидкость. В закрытом сосуде жидкость и ее пар могут находиться в состоянии динамического равновесия, когда число молекул, вылетающих из жидкости, равно числу молекул, возвращающихся в жидкость из пара, то есть когда скорости процессов испарения и конденсации одинаковы. Такую систему называют двухфазной. Пар, находящийся в равновесии со своей жидкостью, называют насыщенным. Число молекул, вылетающих с единицы площади поверхности жидкости за одну секунду, зависит от температуры жидкости. Число молекул, возвращающихся из пара в жидкость, зависит от концентрации молекул пара и от средней скорости их теплового движения, которая определяется температурой пара.

Кипе́ние - процесс парообразования в жидкости (переход вещества из жидкого в газообразное состояние), с возникновением границ разделения фаз. Температура кипения при атмосферном давлении приводится обычно как одна из основных физико-химических характеристик химически чистого вещества.

Кипение различают по типу:

1. кипение при свободной конвекции в большом объеме;

2. кипение при вынужденной конвекции;

3. а так же по отношению средней температуры жидкости к температуре насыщения:

4. кипение жидкости, недогретой до температуры насыщения (поверхностное кипение);

5. кипение жидкости, догретой до температуры насыщения

Пузырьковый

Кипение, при котором пар образуется в виде периодическизарождающихся и растущих пузырей, называется пузырьковым кипением. При медленном пузырьковом кипении в жидкости (а точнее, как правило на стенках или на дне сосуда) появляются пузырьки, наполненные паром. За счёт интенсивного испарения жидкости внутрь пузырьков, они растут, всплывают, и пар высвобождается в паровую фазу над жидкостью. При этом в пристеночном слое жидкость находится в слегка перегретом состоянии, т. е. её температура превышает номинальную температуру кипения. В обычных условиях эта разница невелика (порядка одного градуса).

Плёночный

При увеличении теплового потока до некоторой критической величины отдельные пузырьки сливаются, образуя у стенки сосуда сплошной паровой слой, периодически прорывающийся в объём жидкости. Такой режим называется плёночным.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-20

Если в закрытую пробкой толстостенную банку, дно которой покрыто водой, накачивать, то через какое-то время пробка из банки вылетит и в банке образуется туман. Пробка вылетела из банки, потому что находившийся там воздух действовал на неё с определённой силой. Воздух при вылете пробки совершил работу. Известно, что работу тело может совершить, если оно обладает энергией. Следовательно, воздух в банке обладает энергией.

При совершении воздухом работы понизилась его температура, изменилось его состояние. При этом механическая энергия воздуха не изменилась: не изменились ни его скорость, ни его положение относительно Земли. Следовательно, работа была совершена не за счёт механической, а за счёт другой энергии. Эта энергия - внутренняя энергия воздуха, находящегося в банке.

Внутренняя энергия тела – это сумма кинетической энергии движения его молекул и потенциальной энергии их взаимодействия. Кинетической энергией (Ек ) молекулы обладают, так как они находятся в движении, а потенциальной энергией (Еп ), поскольку они взаимодействуют. Внутреннюю энергию обозначают буквой U . Единицей внутренней энергии является 1 джоуль (1 Дж ). U = Eк + En.

Способы изменения внутренней энергии

Чем больше скорости движения молекул, тем выше температура тела, следовательно, внутренняя энергия зависит от температуры тела . Чтобы перевести вещество из твёрдого состояния в жидкое состояние, например, превратить лёд в воду, нужно подвести к нему энергию. Следовательно, вода будет обладать большей внутренней энергией, чем лёд той же массы, и, следовательно, внутренняя энергия зависит от агрегатного состояния тела .

Внутреннюю энергию можно изменить при совершении работы . Если по куску свинца несколько раз ударить молотком, то даже на ощупь можно определить, что кусок свинца нагреется. Следовательно, его внутренняя энергия, так же как и внутренняя энергия молотка, увеличилась. Это произошло потому, что была совершена работа над куском свинца.

Если тело само совершает работу, то его внутренняя энергия уменьшается, а если над ним совершают работу, то его внутренняя энергия увеличивается.

Если в стакан с холодной водой налить горячую воду, то температура горячей воды понизится, а холодной воды - повысится. В рассмотренном примере механическая работа не совершается, внутренняя энергия тел изменяется путём теплопередачи , о чем и свидетельствует понижение её температуры.

Молекулы горячей воды обладают большей кинетической энергией, чем молекулы холодной воды. Эту энергию молекулы горячей воды передают молекулам холодной воды при столкновениях, и кинетическая энергия молекул холодной воды увеличивается. Кинетическая энергия молекул горячей воды при этом уменьшается.

Теплопередача – это способ изменения внутренней энергии тела при передаче энергии от одной части тела к другой или от одного тела к другому без совершения работы.

Внутренняя энергия тела не является какой-то постоянной величиной: у одного и того же тела она может изменяться. При повышении температуры тела внутренняя энергия тела увеличивается, так как увеличивается средняя скорость , а значит, и кинетическая энергия, молекул этого тела. С понижением же температуры, наоборот, внутренняя энергия тела уменьшается. Таким образом, внутренняя энергия тела изменяется при изменении скорости движения его молекул. Какими же способами можно увеличить или уменьшить эту скорость? Обратимся к опыту.

На подставке (рис. 181) укреплена тонкостенная латунная трубка, в которую налито немного эфира, трубка плотно закрыта пробкой. Трубку обвивают веревкой и быстро двигают веревку то в одну, то в другую сторону. Через некоторое время эфир закипит и его пар вытолкнет пробку. Этот опыт показывает, что внутренняя энергия эфира, увеличилась: ведь он нагрелся и даже закипел. Увеличение внутренней энергии произошло в результате работы, совершенной при натирании веревкой трубки.

Тела нагреваются также при ударах, разгибании и сгибании, вообще при деформации. Во всех этих случаях за счет совершенной работы увеличивается внутренняя энергия тел.

Итак, внутреннюю энергию тела можно увеличить путем совершения работы над телом. Если работу совершает само тело, то внутренняя энергия его при этом уменьшается. Это можно наблюдать на следующем опыте.

Берут толстостенный стеклянный сосуд, закрытый пробкой. Через специальное отверстие в сосуд накачивают воздух, в котором содержится водяной пар. Через некоторое время пробка выскакивает из сосуда (рис. 182). В тот момент, когда пробка выскакивает, в сосуде появляется туман. Его появление означает, что воздух в сосуде стал холоднее (вспомните, что и на улице туман появляется во время похолодания).

Находящийся в сосуде сжатый воздух, выталкивая пробку, совершает работу. Эту работу он совершает за счет своей внутренней энергии, которая при этом уменьшается. Об уменьшении энергии мы судим по охлаждению воздуха в сосуде.

Внутреннюю энергию тела можно изменить и другим способом.

Известно, что чайник с водой, стоящий на плите, металлическая ложка, опущенная в стакан с горячим чаем, печь, в которой разведен огонь, крыша дома, освещаемая солнцем, нагреваются. Во всех случаях повышается температура тел, а значит, увеличивается и их внутренняя энергия. Как объяснить ее увеличение?

Как, например, нагревается холодная металлическая ложка, опущенная в горячий чай? Сначала скорость и кинетическая энергия молекул горячей воды больше скорости и кинетической энергии частиц холодного металла. В тех местах, где ложка соприкасается с водой, молекулы горячей воды передают часть своей кинетической энергии частицам холодного металла. Поэтому скорость и энергия молекул воды в среднем уменьшается, а скорость и энергия частиц металла увеличивается: температура воды уменьшается, а температура ложки увеличивается - температуры их постепенно выравниваются. С уменьшением кинетической энергии молекул воды уменьшается и внутренняя энергия всей воды, находящейся в стакане, а внутренняя энергия ложки, увеличивается.

Процесс изменения внутренней энергии, при котором над телом не совершается работа, а энергия передается от одних частиц к другим, называют теплопередачей. Итак, внутреннюю энергию тела можно изменить двумя способами: совершением механической работы или теплопередачей .

Когда тело уже нагрето, мы не можем указать, каким из двух способов это было сделано. Так, держа в руках нагретую стальную спицу, мы не можем сказать, каким способом ее нагрели - натирая ее или помещая в пламя.

Вопросы. 1. Приведите примеры, показывающие, что внутренняя энергия тела увеличивается при совершении над телом работы. 2. Опишите опыт, показывающий, что за счет внутренней энергии тело может совершить работу. 3. Приведите примеры увеличения внутренней энергии тела способом теплопередачи. 4. Объясните на основе молекулярного строения вещества теплопередачу. 5. Какими двумя способами можно изменить внутреннюю энергию тела?

Задание.

Положите пятикопеечную, монету на лист фанеры или деревянную доску. Прижмите монету к доске и двигайте ее быстро, то в одну, то в другую сторону. Заметьте, сколько раз надо передвинуть монету, чтобы она стала теплой , горячей. Сделайте вывод о связи между проделанной работой и увеличением внутренней энергии тела.

В приведенной ниже статье речь пойдет о внутренней энергии и способах изменения ее. Здесь мы ознакомимся с общим определением ВЭ, с ее значением и двумя видами изменения состояния энергией, которой обладает физическое тело, объект. В частности будет рассмотрено явление теплопередачи и совершение работы.

Введение

Внутренняя энергия - это та часть ресурса системы термодинамического характера, которая не является зависимой от конкретной отсчетной системы. Она может изменять свое значение в пределах изучаемой проблемы.

Характеристики равного значения в системе отсчета, по отношению к которой центральная масса тела/объекта макроскопических размеров являет собой состояние покоя, обладают одинаковой полной и внутренней энергиями. Они всегда соответствуют друг другу. Набор частей, из которых состоит полная энергия, входящая во внутреннюю, является непостоянным и зависит от условий решаемой задачи. Другими словами, ВЭ не является специфическим видом энергетического ресурса. Она представляет собой общую совокупность ряда компонентов системы полной энергии, которые изменяются с учетом конкретных ситуаций. Способы изменения внутренней энергии базируются на двух основных принципах: теплопередаче и совершении работы.

ВЭ является специфическим понятием для систем термодинамического характера. Она позволяет вводить в пользование физики разнообразные величины, такие как температура и энтропия, размерность химического потенциала, масса веществ, образующих систему.

Выполнение работы

Существует два способа изменения внутренней энергии тел(а). Первый образуется благодаря процессу совершения непосредственной работы над объектом. Второй - это явление теплопередачи.

В случаи, если выполнение работы совершается самим телом, его показатель внутренней энергии будет уменьшаться. Когда процесс будет завершен кем-то или чем-то над телом, тогда его показатель ВЭ будет расти. При этом наблюдается трансформация механического энергетического ресурса во внутренний тип энергии, которым обладает объект. Также может протекать все и наоборот: механическая во внутреннюю.

Теплопередача увеличивает величину ВЭ. Однако если тело будет остывать, то и энергия будет снижаться. При постоянном поддержании трансляции тепла, показатель будет возрастать. Сжатие газов служит примером увеличения показателя ВЭ, а их расширение (газов) - следствие уменьшения величины внутренней энергии.

Явление теплопередачи

Изменение внутренней энергии способом теплопередачи представляет собой увеличение/снижение энергетического потенциала. Им обладает тело, без проведения определенной (в частности механической) работы. Передающееся количество энергии именуют теплотой (Q, Дж), а сам процесс подчиняется всеобщему ЗСЭ. Совершение изменений во ВЭ всегда отражается ростом или снижение температуры самого тела.

Оба способа изменения внутренней энергии (работа и теплопередача) могут совершаться по отношению к одному объекту в одновременном порядке, т. е. они могут совмещаться.

Изменить ВЭ можно, например, создавая трение. Здесь четко отслеживается совершение механической работы (трение) и явление теплообмена. Подобным образом старались добывать огонь наши предки. Они создавали трение между древесиной, температура воспламенения которой соответствует отметке в 250 °С.

Изменение внутренней энергии тела посредством совершения работы или теплопередачей может происходить в один и тот же отрезок времени, т. е. эти два вида средств могут работать совместно. Однако простого трения в конкретном случае будет мало. Для этого одну ветвь необходимо было заострять. В настоящее время человек может получить огонь при помощи трения спичек, головки которых покрывают горючим веществом, воспламеняющимся при 60-100 °С. Первая подобная продукция началась создаваться в 30-ых годах XIX века. Это были фосфорные спички. Они способны загораться при относительно низкой температуре - 60 °С. В настоящее время пользуются которые были запущены в производство в 1855 года.

Зависимость энергии

Говоря о способах изменения внутренней энергии, важно будет упомянуть также о зависимости этого показателя от температуры. Дело в том, что количество этого энергетического ресурса обусловлено средней величиной кинетической энергии, сосредоточенной в молекуле тела, которая, в свою очередь, напрямую зависит от показателя температуры. Именно по этой причине изменение температуры всегда приводит к изменению ВЭ. Из этого также следует, что нагревание приводит к росту энергии, а охлаждение вызывает ее уменьшение.

Температура и теплообмен

Способы изменения внутренней энергии тела делятся на: теплопередачу и совершение механической работы. Однако важно будет знать, что количество теплоты и температура - это не одно и то же. Эти понятия нельзя путать. Температурные величины определяются градусами, а количество передаваемой или переданной теплоты определяется при помощи джоулей (Дж).

Контакт двух тел, одно из которых будет горячее, всегда приводит к утрате тепла одним (более горячим) и к приобретению его другим (более холодным).

Важно отметить, что оба способа изменения ВЭ тела всегда приводят к одинаковым результатам. Определить, каким именно способом было достигнуто ее изменение, по конечному состоянию тела, невозможно.