Необычные растения        14.05.2019   

История открытия, некоторые физические, химические и механические свойства циркония, применение циркония. Цирконий, циркон, диоксид циркония


2. История и происхождение названия
3. Физико-химические свойства
4. Применение циркония и его соединений
5. Биологическая роль и физиологическое действие

Цирконий в виде двуокиси впервые был выделен в 1789 году немецким химиком М. Г. Клапротом в результате анализа минерала циркона.

Происхождение самого слова циркон неясно. Возможно, оно происходит от арабского zarkûn или от персидского zargun.

Нахождение в природе

Соединения циркония широко распространены в литосфере. По разным данным кларк циркония от 170 до 250 г/т. Концентрация в морской воде 5×10 мг/л. Цирконий — литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. В природе распространены главным образом циркон, бадделеит и различные сложные минералы 5 и др.). Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr.

Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами.

Бадделеит был найден Юссаком в 1892 г в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас. Там была найдена глыба бадделеита весом около 30 т, а в водных потоках и вдоль обрыва бадделеит встречается в виде аллювиальной гальки диаметром до 7,5 мм, известной под названием фавас. Фавас обычно содержит свыше 90 % двуокиси циркония.

Месторождения

Наиболее крупные месторождения циркония расположены на территории США, Австралии, Бразилии, Индии.

В России, на долю которой приходится 10 % мировых запасов циркония, основными месторождениями являются: Ковдорское коренное бадделит-апатит-магнетитовое в Мурманской области, Туганское россыпное циркон-рутил-ильменитовое в Томской области, Центральное россыпное циркон-рутил-ильменитовое в Тамбовской области, Лукояновское россыпное циркон-рутил-ильменитовое в Нижегородской области, Катугинское коренное циркон-пирохлор-криолитовое в Читинской области и Улуг-Танзекское коренное циркон-пирохлор-колумбитовое.

История открытия циркония

В 1789 г. член Берлинской академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей. Происхождение этого названия объясняют по-разному. Одни находят его истоки в арабском слове «заркун», что значит минерал, другие считают, что слово «цирконий» произошло от двух персидских слов «цар» - золото и «гун» - цвет (из-за золотистой окраски драгоценной разновидности циркона - гиацинта).

Выделенное Клапротом вещество не было новым элементом, но было окислом нового элемента, который впоследствии занял в таблице Д.И. Менделеева сороковую клетку. Пользуясь современными символами, формулу вещества, полученного Клапротом, записывают так: ZrO2. Чистый цирконий удалось получить лишь спустя 35 лет, но об этом далее.

Нахождение циркония в природе

Металл Цирконий. Соединения циркония широко распространены в литосфере. По разным данным содержание металла в земной коре от 170 до 250 г/т. Цирконий - литофильный элемент. В природе известны его соединения исключительно с кислородом в виде окислов и силикатов. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. В природе распространены главным образом циркон (ZrSiO4)(67,1% ZrO2), бадделеит (ZrO2) и различные сложные минералы (эвдиалит (Na, Ca)5(Zr, Fe, Mn) и др.). Во всех земных месторождениях цирконию сопутствует Hf, который входит в минералы циркона благодаря изоморфному замещению атома Zr.

Циркон является самым распространенным циркониевым минералом. Он встречается во всех типах пород, но главным образом в гранитах и сиенитах. В графстве Гиндерсон (шт. Северная Каролина) в пегматитах были найдены кристаллы циркона длиной в несколько сантиметров, а на Мадагаскаре были обнаружены кристаллы, вес которых исчисляется килограммами. цирконий менделеев атом

Бадделеит был найден Юссаком в 1892 г в Бразилии. Основное месторождение находится в районе Посус-ди-Калдас (Бразилия). Там была найдена глыба бадделеита весом около 30 т, а в водных потоках и вдоль обрыва бадделеит встречается в виде аллювиальной гальки диаметром до 7,5 мм, известной под названием фавас (от португальского fava -- боб). Фавас обычно содержит свыше 90 % двуокиси циркония. Несмотря на то, что цирконий рассеянный элемент, насчитывается около 40 минералов, в которых цирконий присутствует в виде окислов или солей. Основные промышленные минералы: циркон ZrSiO4 , 4% HfO2), бадделеит ZrO2 (до 73,9% Zr, 4 - 6% HfO2).

Минерал гиацинт с острова Цейлон, содержащий цирконий, был известен с древних времен как драгоценный камень из-за его красивого бледного желто-коричневого цвета, переходящего в дымчато-зеленый, и особого блеска. В 1789 г. член Берлинской академии наук Мартин Генрих Клапрот сплавил в серебряном тигле порошок циркона с едкой щелочью и растворил сплав в серной кислоте. Выделив из раствора кремнекислоту и железо, он получил кристаллы соли, а затем и окисел (землю), названную им циркония (Zirconerde). Чистый цирконий удалось выделить лишь в 1914 г. Названия "циркон" и "цирконий" (встречается название "цирконная земля") происходят от арабского zarqun - киноварь. Персидское слово zargun означает "окрашенный в золотистый цвет". Современная формула вещества, полученного Клапротом, выглядит так: ZrO2. Циркон в основном добывается из песков (продукта распада магматических горных пород). Наиболее крупные разрабатываемые месторождения циркона расположены в пределах россыпных провинций (в песках) вдоль Восточного и Западного побережий Австралии, Восточного и Западного побережий ЮАР, Атлантического побережья США и Бразилии.

Цирконий – элемент побочной подгруппы четвертой группы пятого периода периодической системы химических элементов Д.И.Менделеева, с атомным номером 40.

Цирконий, Zirconium, Zr (40) существует в двух кристаллических модификациях: a-формы с гексагональной плотноупакованной решёткой (а = 3,228 ; с = 5,120) и b-формы с кубической объёмноцентрированной решёткой (а = 3,61). Переход a -> b происходит при 862 °C. Чистый цирконий пластичен, легко поддаётся холодной и горячей обработке (прокатке, ковке, штамповке). Наличие растворённых в металле малых количеств кислорода, азота, водорода и углерода (или соединений этих элементов с цирконием) вызывает хрупкость циркония. Модуль упругости (20 °C) 97 Гн/м2 (9700 кгс /мм2); предел прочности при растяжении 253 Мн/м2 (25,3 кгс/мм2); твёрдость по Бринеллю 640–670 Мн/м2 (64–67 кгс/мм2); на твёрдость очень сильное влияние оказывает содержание кислорода: при концентрации более 0,2% цирконий не поддаётся холодной обработке давлением.



Механические свойства циркония существенно повышаются нагартовкой; это повышение исчезает при отжиге до 100 - 400 С.

С повышением температуры механические свойства циркония значительно изменяются: с увеличением температуры от 20 до 500 С предел прочности в 5 раз уменьшается, а относительное удлинение в 3 раза возрастает.

Внешняя среда оказывает существенное влияние на механические свойства циркония при высоких температурах. Температура перехода а Р равна 862 С. Цирконий отличается чрезвычайно высокой пластичностью и коррозионной стойкостью.

В свободном состоянии цирконий представляет собой блестящий металл плотностью 6 45 г / см3, плавящийся при 1855 С. Не содержащий примесей цирконий очень пластичен и легко поддается холодной и горячей обработке.

В промышленности двуокись циркония первыми применили силикатные производства и металлургия. Еще в начале нашего века были изготовлены цирконовые огнеупоры, которые служат в три раза дольше обычных. Значительные количества двуокиси циркония потребляют производства керамики, фарфора и стекла.

2. Применение циркония в стоматологии

Основным сырьем для производства диоксида циркония является минерал циркон (ZrSiO4). Оксид циркона получают из него путем химической обработки с помощью добавок. Полученный реагентный порошок смешивается с присадками. Разграничивают агломерационные присадки, которые в особенности оказывают воздействие на характеристики спекания и характеристики готовой керамики, и вспомогательные материалы, которые способствуют формообразованию.

Для применения в стоматологии оксид циркония сплавляют с иттрием, чтобы стабилизировать так называемую тетрагональную фазу. При разных температурах оксид циркония существует в разных кристаллических фазах. Наибольший интерес для практической стоматологии представляют, прежде всего, такие фазы как тетрагональная и моноклинальная фаза. Тетрагональная фаза имеет объем на 4% меньше чем моноклинальная. В каркасе из оксида циркония присутствуют обе фазы, причем материал стремится, прежде всего, к моноклинальной фазе при комнатной температуре. Если в каркасе развивается трещина, стабилизированные иттрием тетрагональные частицы превращаются в моноклинальные, что приводит к повышению объема. Благодаря подобному фазовому преобразованию в керамике возникает напряжение сжатия, которое в идеале приводит к прекращению прогрессирования трещины. Этот процесс определяют как трансформационное усиление или «эффект подушки безопасности» цирконий оксида. После стабилизации порошка циркона иттрием происходит прессование. Различают следующие виды прессования:

По температуре:

1) холодное (при комнатной температуре)

2) горячее прессование (нагревание до 700 С- 900 С в атмосфере аргона).

По осям сжатия:

1) одноостное (пресс только сверху и движется вниз)

2) двуостное (прессы движутся навстречу друг другу)

3) изостатическое (прессы движутся со всех сторон к центру)

От типа прессования зависит структура прессованного блока (количество и размер микропромежутков в блоке), а значит, и равномерность и объем усадки при спекании, а значит, и качество конечного продукта. Наиболее приемлемым видом прессования является изостатическое горячее прессование (ИГП). Этот процесс наиболее технологически сложный и дорогостоящий, но позволяет добиться лучшего результата на выходе.

Заготовки из диоксида циркония (блоки циркония) изготавливаются путем различных методик. В то время, как агломерирующие добавки остаются в оксиде циркона, вспомогательные материалы, которые, кроме воды, являются в основном легкоиспаряющимися органическими соединениями, удаляются из отливки оксида циркона перед процессом агломерации, не оставляя никаких следов. И хотя этот материал подвергается процессу предварительного спекания, материал остается способным к обработке с помощью боров, сделанных из карбида вольфрама. Объект вырезается фрезой из блока циркона, мягкого как мел, размер которого примерно на 25% больше, чем размер этого объекта. Потом выполняется окончательная агломерация при температуре 1500 ˚С, и, таким образом, достигается его конечная консистенция. Во время этого процесса объект дает усадку на 20%. Только в процессе окончательной агломерации структуры действительно приобретают свои подлинные характеристики. Уплотнение частиц порошка оксида циркона происходит путем уменьшения удельной поверхности.

Это получают с помощью термозависимых диффузионных процессов с изменением частей поверхности, межзёренной границы и диффузионного объема. Если твердотельная диффузия проходит слишком медленно, процесс агломерации может проводиться под давлением. Это называется горячим прессованием или горячим изостатическим прессованием (“HIP процесс”) циркона. Характеристики такой цирконовой керамики зависят в большей степени от химического состава материала и процесса изготовления.

Различают полностью стабилизированный диоксид циркония (FSZ) и частично стабилизированный диоксид циркония (PSZ). Частичная стабилизация может быть достигнута с использованием добавки 3-6% CaO, MgO или Y2O3. В зависимости от условий изготовления стабилизироваться может кубическая, тетрагональная или моноклиническая модификация. Частично стабилизированный диоксид циркония имеет высокую термостойкость, и, таким образом, также подходит для использования при высоких температурах в машиностроении.

Кубическая модификация диоксида циркония может стабилизироваться от абсолютного нуля до кривой солидуса добавлением присадки 10-15% CaO и MgO (FSZ), и этот керамический материал может термически и механически выдерживать температуру 2000 ˚С. Однако, из-за низкой теплопроводности и высокого коэффициента теплового расширения по сравнению с частично стабилизированным диоксидом циркония термостойкость полностью стабилизированного диоксида циркония ниже. Диоксид циркония, применяемый в стоматологии, имеет следующий состав: 95 % ZrO2 + 5 % Y2O3.

История открытия диоксида циркония, который применяется в современной связана с его минералом. Два века тому назад диоксид циркония был выделен из минерала циркон. С этим минералом связано много древних легенд. Более трех тысяч лет назад, на острове Цейлон, этот минерал использовался в качестве несовершенного алмаза и шел на изготовление женских и мужских украшений. Блестящие камни носили название «матарские алмазы», так как источником их месторождения был один из районов Цейлона - Матара. От истинных алмазов, «матарские» отличались меньшей твердостью и несколько худшей игрой цвета после огранки.

Матарский алмаз с целой палитрой красок (от бесцветного и золотисто-желтого до розового и кроваво-красного оттенка) был не что иное, как минерал циркон. Алмазы кроваво-красного цвета назывались в то время гиацинтами (по имени эпического героя Гиацинта, погибшего на спортивных состязаниях, кровь которого бог Аполлон превратил в самоцветы). В древности гиацинты носили на груди первосвященники, считавшие, что красный цвет защищает их от злых духов, болезней и помогает переносить трудности и лишения. Путешественники использовали красный камень в качестве амулета, помогающего утолять жажду и защищающего от ядов. Средневековые врачи прописывали гиацинт как средство от кручины и депрессии, а так же для просветления разума, лечили им нервные болезни, галлюцинации, расстройство сна, и даже пытались гиацинтом «воскрешать из мертвых». В Индии этим камнем старались умилостивить дракона (индийское название минерала - «рахуратка»).

В науке существует несколько версий по поводу того, кто дал современное имя «несовершенному алмазу». По одним источникам, нынешним названием полудрагоценный цейлонский алмаз обязан немецкому ученому Брюкнеру, который нарек его в 1778 году арабским словом «заркун», что значит «минерал». По другим, первооткрывателем циркона считается химик Вернер (1783 г.), давший минералу имя «царгун» от двух персидских слов «цар» - золото и «гун» - цвет. Третьи источники утверждают, что циркон -это видоизмененное от простонародного «жаргон» - «обманщик», то есть «ненастоящий алмаз». Официально в научных трудах минерал циркон стал упоминаться в восьмидесятых годах XVIII века. В 1789 г. Немецкий химик, член Берлинской Академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей (terra circonia). Так Мартин Генрих Клапрот стал первым ученым, выделившим из минерала циркон вещество диоксид циркония (ZrO 2) .

Попытки получить металлический цирконий осуществляли разные ученые: Тромсдорф (восстановление оксида циркония химическим методом), Деви (электролитический метод получения металлического циркония) и т.п. И только в 1824 г., шведский химик Йенс Якоб Берцелиус, путем восстановления фторцирконата калия металлическим натрием, получил серебристо-серый металл.

К 2 + 4Na → Zr + 2KF + 2NaF

Полученный в ходе реакции восстановления металл ученый назвал цирконием . Но «цирконий Берцелиуса» оказался очень хрупким, так как содержал значительное количество примесей, не имел металлического блеска и не поддавался механической обработке. Металлу требовалась дополнительная очистка от примесей.

В 1914 г. немецкие исследователи Лили и Гамбургер выделили довольно чистый от примесей цирконий, восстановив натрием в специальном автоклаве-бомбе дважды возогнанный тетрахлорид циркония. Через сто лет после опытов Берцелиуса в 1925 г. был разработан первый промышленный способ получения циркония: метод «наращивания». Суть метода заключалась в следующем: летучее соединение (тетрайодид циркония) подвергалось термическому распаду в вакууме и, в результате, на раскаленной нити вольфрама откладывался чистый металл. Основателями этого метода стали голландские ученые А.Е. Ван-Аркель и Д.Н. де Бур. Благодаря их открытию научный мир получил пластичный металлический цирконий, поддающийся механической обработке - ковке, вальцовке, прокатке. Образцы циркония теперь можно было прокатывать в тонкие листы, проволоку, фольгу и т.п.

Но метод «наращивания» был слишком дорогим. Усовершенствовал и удешевил процесс получения циркония немецкий химик В. Кролль. В последствии его имя легло в название данного метода (метод Кроля). Цирконий по данной технологии получался при вдвое меньших затратах, чем по методу наращивания. Схема производства металлического циркония по методу В. Кролля включала в себя две основные стадии: хлорирование двуокиси циркония в четыреххлористый цирконий и последующее восстановление полученного продукта металлическим магнием под слоем расплавленного металла в металлическую губку. Полученная в ходе процесса восстановления циркониевая губка затем переплавлялась в прутки. Метод Кроля получил широкое признание .

Цирконий (Zr ) - это химический элемент IV группы периодической системы Менделеева; его атомный номер 40; атомная масса 91,224. Чистый цирконий существует в двух формах: кристаллическая форма - мягкий, ковкий металл серовато-белого цвета; аморфная форма - голубовато - черный порошок. Плотность 6,49 г/см3, t плавления 1852 °С (3362ºF)., t кипения 4377°С (7911ºF). Среднее содержание циркония в земной коре 1,7·10 -2 % по массе, в гранитах, песчаниках и глинах несколько больше 2·10 -2 %, чем в основных породах 1,3·10 -2 %. Максимальные концентрации циркония - в щелочных породах 5·10 -2 %. Цирконий не встречается в природе в чистом состоянии, а может быть обнаружен в соединении с оксидом силиката – минерал циркон (ZrSiO4) или в виде свободного диоксида циркония - минералбадделеит (ZrO2) .

Минерал Циркон (ZrSiO 4) является силикатом циркония. Содержит примеси железа, меди, кальция, цинка, титана, гафния, урана и тория. Призматические кристаллы, зерна, агрегаты. Твердость 7,5; плотность 4,0-4,7 г/см 3 . Встречается в гранитах, сиенитах, щелочных пегматитах. По цвету и прозрачности различают следующие виды циркона:

Гиацинт - прозрачный, красный, красно-оранжевый, красно-коричневый, пурпурный.

Жаргон - прозрачный, медово-желтый, дымчатый, бесцветный.

Старлит - прозрачный, голубой (получается прокаливанием).

По данным проведенных анализов оказалось, что циркон содержит в себе около 68% диоксида циркония (ZrO 2) и около 3% гафния (Hf), которые трудно разделить .

Средний состав циркона (% по массе):

ZrO 2 (66-68%), Hf(1-3%), SiO 2 (32-33%), Al 2 O 3 (0,2-0,8%), Fe 2 O 3 (0,03-0,08%), TiO 2 (0,08-0,1%), U 3 O 8 (0,02-0,03%), P 2 O 5 (0,1%),
Оксиды РЗЭ(0,5-0,6%)

ZrO 2 ) встречается в природе в виде минерала бадделеита. Бесцветные моноклинные кристаллы (плотность - 5,8 г/см 3) или бесцветные тетрагональные кристаллы (плотность - 6,1 г/см 3). Чистый диоксид циркония тугоплавок и устойчив при повышенной температуре, t пл =2680 о С, t кип =4300 о С. Имеет низкую удельную теплопроводность. Диамагнитен, мало растворим в воде, устойчив к действию различных химических реагентов .

Минералы циркона и бадделеита не могут использоваться в медицине в первичном состоянии из-за содержащихся в них примесей различных металлов, придающих им непригодный для использования цвет, и примесей радионуклидов, таких как уран и торий, которые делают их радиоактивными. Для получения чистых от примесей порошков диоксида циркония требуются комплексные и длительные процессы очистки. После очищения от примесей данный материал может быть использован в качестве керамического биоматериала .

Минерально-сырьевая база. Производство. По оценке USGS (Геологическая служба США), мировые разведанные запасы циркония составляют 38 млн. тонн (в пересчете на ZrO 2). Более 95 % запасов циркония за рубежом учитываются в современных и погребенных прибрежно-морских циркон-рутил-ильменитовых россыпях. Обычное содержание циркона в разрабатываемых россыпях - от 7-8 до 15-20 кг/м 3 . По данным USGS, основной объем запасов приходится на Австралию, ЮАР, США, Индию, Бразилию .

Россия по запасам сырья занимает четвертое место в мире. Более 50 % ее балансовых запасов связано со щелочными гранитами, 14 % - с бадделеитовыми камафоритами, 35 % -с погребенными циркон-рутил-ильменитовыми россыпями. Таким образом, минерально-сырьевая база циркония России структурно и качественно отличается от зарубежной. В России полностью отсутствуют современные цирконийсодержащие прибрежно-морские россыпи, тогда как за рубежом с ними связаны почти все запасы циркония. Погребенные россыпи отличаются от современных более сложными горно-геологическими условиями залегания и соответственно характеризуются низкой рентабельностью отработки. На месторождения циркония в щелочных гранитах за рубежом приходится 2 % запасов, и они не рассматриваются в качестве перспективного источника циркония, в то время как в России с этим типом связано более 50 % запасов (Улуг-Танзекское и Катугинское месторождения). Освоенность минерально-сырьевой базы циркония России крайне низкая - в настоящее время разрабатывается только одно Ковдорское месторождение бадделеита (Мурманская область). Бадделеитовый концентрат в настоящее время производится только в России. В то же время цирконовый концентрат является остродефицитным сырьем и полностью импортируется в Россию .

Мировое производство диоксида циркония оценивается специалистами USGS в пределах 40-50 тыс. тонн в год. Диоксид циркония выпускается несколькими компаниями США, Японии, Франции и Италии. Интенсивно расширяются мощности по производству диоксида циркония в Японии, Австралии, ЮАР, Норвегии, Китае и других странах. Крупнейший производитель диоксида циркония - США .

Основные экспортеры цирконового концентрата - Австралия и ЮАР. В последние годы объемы экспорта концентрата из Австралии сокращались, в то время как ЮАР увеличивала поставки. Главными импортерами цирконового концентрата являются страны Западной Европы (Италия, Испания, Германия, Франция, Нидерланды и Великобритания), а также Китай и Япония.

Экспорт бадделеитового концентрата из России с 90-х г. постепенно увеличивался главным образом в Норвегию. Начиная с 2002 г. бадделеит также экспортируется в страны Юго-Восточной Азии и Западной Европы .

Цирконовый концентрат импортируется в Россию с Украины, очень редко - из Австралии; частично потребность удовлетворялась за счет запасов госрезерва. Объем поставок цирконового концентрата составил в 2000 г. 9,3 тысяч тонн, а в 2001 г. возрос на 11 % - до 14 тысяч тонн .

На данный момент цены на высокочистый стабилизированный диоксид циркония, полученный химическим путем составляют:

Диоксид Zr стабилизированный (CaO) - $18,1 за 1 кг.

Диоксид Zr стабилизированный (MgO) - $19,4 за 1 кг.

Диоксид Zr стабилизированный (3% Y 2 O 3) - $18,8 за 1 кг.

Диоксид Zr стабилизированный (8% Y 2 O 3) - $20,1 за 1 кг .

По оценкам специалистов потребление диоксида циркония активно растет. Основной объем использования этой продукции приходится на выпуск огнеупоров и керамических пигментов. С 2000 года наблюдается значительный рост потребления диоксида циркония для тонкой керамики при производстве оптоволоконного кабеля и других высокотехнологичных продуктов, используемых в коммуникационных сетях, а также для электронной промышленности. В мировом автомобилестроении ожидается дальнейший рост спроса на диоксид циркония для производства каталитических фильтров-нейтрализаторов выхлопных газов автомобилей вследствие ужесточения экологического законодательства в странах Азии, Южной Америки и Африки, а также ввиду введения во всех регионах более строгих правил в отношении дизельных автомобилей .

Диоксид циркония получают путем удаления оксида кремния из цирконового концентрата с использованием различных процессов термической и химической диссоциации. При этом различают плавленый диоксид циркония (моноклинный и стабилизированный), получаемый термическим процессом (плавка в электрических печах цирконового концентрата). Для получения диоксида циркония помимо цирконового используются также бадделеитовый (98-99 % ZrО2) и калдаситовый (70-80 % ZrO2) концентраты. В настоящее время из бадделеита производится менее 20 % диоксида циркония, тогда как в начале 90-х гг. - более 60 % . Высокочистый диоксид циркония производится химическим способом, при этом выделяют также моноклинный и стабилизированные сорта с полной (FSZ - Fully Stabilized Zirconia) или частичной стабилизацией (PSZ - Partially Stabilized Zirconia).

Диоксид циркония (ZrO 2) существует в виде трех кристаллических фаз: моноклинной (М), тетрагональной (Т) и кубической (С). Во время нагревания диоксид циркония подвергается процессу фазового преобразования.


Моноклинная фаза термодинамически устойчива при комнатной температуре и до 1170ºС. Свыше этой температуры происходит переход диоксида циркония в более плотную тетрагональную фазу. Тетрагональная фаза устойчива при температурах от 1170ºС до 2370ºС. При температурах выше 2370ºС диоксид циркония переходит в кубическую фазу. При нагревании переход из моноклинной (М) в тетрагональную (Т) фазу сопровождается уменьшением объема на 5%. При охлаждении переход из тетрагональной (Т) в моноклинную фазу (М) происходит в диапазоне температур от 100ºС до 1070ºС и сопровождается увеличением объема на 3-4% .

Стабилизированный диоксид циркония.

Добавление стабилизирующих оксидов к чистому диоксиду циркония, таких как кальций (CaO), магний (MgO), церий (CeO 2) и иттрий (Y 2 O 3), может подавлять фазовые трансформации материала. В зависимости от количества стабилизирующего агента различают диоксид циркония: полностью стабилизированный (FSZ - Fully Stabilized Zirconia), частично стабилизированный (PSZ - Partially Stabilized Zirconia) .

Полностью стабилизированный диоксид циркония (FSZ) получают при добавлении к нему более 16% моль CaO(7,9% веса), 16% моль MgO (5,86% веса), 8 % моль Y 2 O 3 (13,75% веса). Он имеет кубическую форму (С). Из-за его повышенной прочности и высокой резистентности к тепловому удару этот материал успешно используется для производства огнеупоров и технической керамики .

Частично стабилизированный диоксид циркония (PSZ) получают добавлением меньшего количества стабилизирующих агентов, чем при получении полностью стабилизированного диоксида циркония (FSZ). Наиболее полезные механические свойства могут быть получены, когда диоксид циркония будет находиться в многофазном состоянии. Стабилизаторы позволяют получить многофазный материал при комнатной температуре, в которой кубическая (С) - главная фаза, а моноклинная (М) и тетрагональная (Т) - второстепенные фазы .

Несколько видов частично стабилизированного диоксида циркония (PSZ) было проверено для возможного использования в качестве керамического биоматериала. Керамика на основе диоксида циркония, частично стабилизированного оксидом магния (Mg-PSZ) - одна из наиболее часто используемых видов технических керамик. Керамика Mg-PSZ рассматривалась в качестве материала для использования в медицине . Остаточная пористость в материале, довольно крупный размер частиц (30-40мкм), сложность в получении Mg-PSZ без примесей - все это снизило интерес в использовании этой керамики для биомедицинских целей . Известно, что механизм трансформационного упрочнения менее выражен в керамике на основе диоксида циркония, частично стабилизированного магнием (Mg-PSZ), чем у керамики на основе диоксида циркония, частично стабилизированного иттрием (Y-TZP) .

Керамику на основе диоксида циркония, стабилизированного оксидом церия (CeO 2), редко рассматривали в качестве керамического биоматериала, хотя она показывает высокую трещиностойкость (до 20 МПа√м) и долговечность .

Диоксид циркония , частично стабилизированный иттрием (Y-TZP - Yttrium-Tetragonal Zirconia Polycrystal )

В присутствии малого количества стабилизирующих оксидов возможно получить керамику на основе частично стабилизированного диоксида циркония (PSZ) при комнатной температуре только с тетрагональной фазой - тетрагональные поликристаллы диоксида циркония (TZP - Tetragonal Zirconia Polycrystals). Добавление примерно 2-3% моль иттрия (Y 2 O 3) в качестве стабилизирующего агента к диоксиду циркония позволяет получать керамический материал, состоящий из 100% мелких метастабильных тетрагональных частиц - Y - TZP (Yttrium - Tetragonal Zirconia Polycrystal ) .

Добавление более 8% моль иттрия (Y 2 O 3) к диоксиду циркония позволяет получать полностью стабилизированный диоксид циркония (FSZ) только с кубической фазой, но с меньшим сопротивлением к разрушению, чем у керамики с частичной стабилизацией (PSZ) .

Физические и механические свойства Y- TZP керамики

Керамика на основе диоксида циркония, частично стабилизированного иттрием (Y-TZP), показывает исключительные механические и физические свойства. Показатели прочности на изгиб и трещиностойкости превосходят характеристики всех протестированных до сих пор керамических материалов. Основные характеристики Y-TZP керамики в сравнении с керамикой на основе алюминия (Alumina) отражены в табл. 1

Таблица 1

Основные характеристики Y-TZP керамики

Свойства

Y - TZP

Химический состав

ZrO 2 +3%моль Y 2 O 3

Плотность, г/см³

Пористость, %

Прочность на изгиб, МПа

Прочность на сжатие, МПа

Модуль Юнга, ГПа

Трещиностойкость К 1С МПа м -1

Коэффициент теплового расширения, К -1

Теплопроводность, Wm К -1

Твердость, HV 0.1

Керамика на основе диоксида циркония отличается уникальной способностью повышать свою механическую прочность под воздействием нагрузок. Это происходит за счет механизма трансформационного упрочнения.

Y - TZP керамики.

Высокодисперсные частицы тетрагонального диоксида циркония внутри кубической матрицы при условии, что они достаточно маленькие, могут поддерживаться в метастабильном состоянии, которое способно трансформироваться в моноклинную фазу . Сжимающие напряжения жесткой матрицы на тетрагональные частицы диоксида циркония противостоят трансформации их в менее прочную моноклинную фазу. Частицы тетрагонального диоксида циркония могут трансформироваться в моноклинную фазу, когда сжимающие напряжения, которые оказываются на них матрицей, снимаются трещиной в материале .

На переднем конце трещины происходит Т→М трансформация с увеличением объема на 3-5%, которая инициирует появление сжимающих напряжений в противоположность растягивающим напряжениям, способствующих распространению трещины. Этот процесс дает начало сильному механизму, подавляющему распространение трещины и упрочняющему керамику - механизму трансформационного упрочнения. Энергия разлома рассеивается в Т→М трансформации, которая подобна мартенситному преобразованию в закаленной стали. В результате, распространение трещины подавляется и увеличивается прочность керамики.



«Старение» Y - TZP керамики

В отличие от металлов, керамические материалы обладают высокой устойчивостью к электрохимической коррозии, однако в некоторых случаях они подвержены химической коррозии (химической растворимости). Химическая коррозия может серьезно влиять на прочность керамического материала. Разрушение керамики связывают с трещинами, размеры которых увеличиваются настолько, что материал перестает сопротивляться воздействию прилагаемых к нему нагрузок. Разрушение керамики происходит в виде внезапного распада материала, такого как мгновенный раскол хрустального фужера или ветрового стекла автомобиля. Химическое взаимодействие между керамикой и окружающей средой (вода, водяной пар) в области верхушки трещины ускоряет рост трещины. Этот процесс происходит в результате воздействия воды или водяного пара на связь Si-O-Si с образованием гидроксидных соединений в области верхушки трещины кремнеземистого стекла, приводя в результате к разрушению керамического материала под воздействием приложенных нагрузок .

Стабильность керамики на основе диоксида циркония под длительным воздействием влаги и нагрузки представляет собой особый интерес. Свободная от кремнеземистого стекла керамика на основе диоксида циркония, частично стабилизированного иттрием, не подвержена химической коррозии, но в литературе описано низкотемпературное разрушение (LTD- Low Temperature Degradation) керамики, известное как «старение» материала. Этот процесс происходит в результате прогрессирующей спонтанной трансформации тетрагональной в моноклинную фазу (Т→М), которая приводит к уменьшению механической прочности Y-TZP керамики .

Низкотемпературное разрушение («старение») керамики на основе диоксида циркония было детально изучено. Было установлено, что разрушение происходило при контакте с водой или водяным паром во время стерилизации и имело максимальное значение при температуре 250ºС .

Процессы «старения» Y-TZP керамики подробно суммировал Swab J. (1991) :

Диапазон наиболее критической температуры для «старения» находится между 200-300ºС;

  1. Эффект «старения» проявляется в виде снижения прочности, плотности, трещиностойкости материала и повышением содержания в материале моноклинной фазы;
  2. Снижение механической прочности материала происходит в результате Т→М трансформации, которая сопровождается образованием микро и макро трещин в материале;
  3. Т→М трансформация начинается на поверхности и прогрессирует в тело материала;
  4. Снижение размера частиц и/или увеличение концентрации стабилизирующего агента замедляет скорость Т→М трансформации;
  5. Т→М трансформация усиливается в воде или паре.

Низкотемпературное разрушение («старение») керамики на основе диоксида циркония приводит в результате к разрушению поверхности материала, а именно :

  1. Создание шероховатой поверхности, которое ведет к повышенному износу материала;
  2. Образование трещин, которые уменьшают срок службы материала

Скорость низкотемпературного разрушения («старения») Y-TZP керамики зависит от многих факторов, таких как: химический и фазовый состав материала, размер частиц материала, концентрация стабилизирующего агента, длительность воздействия «стареющей» среды и нагрузки на материал, процессы производства и обработки материала.

В работе Акимова Г.Я. и соавторов (2005) был проведен анализ зависимости прочности керамики на основе частично стабилизированного диоксида циркония (Y-TZP) от степени тетрагональности тетрагональной фазы (Т-фазы). В результате исследования было установлено, что прочность керамики на основе частично стабилизированного диоксида циркония при сравнительно высокой плотности (≈98-99% от теоретической) существенным образом зависит от присутствия (отсутствия) в ее структуре модификации Т-фазы с большим значением степени тетрагональности. Чем больше значение степени тетрагональности, тем больше прочность керамики .

Было высказано предположение, что количество моноклинной фазы (М-фазы) должно быть меньше 10% для каждой поверхности материала, которая контактирует со «стареющей» средой (вода, пар) .

Уменьшение размера частиц и/или увеличение концентрации стабилизирующего агента может уменьшить скорость спонтанной Т→М трансформации в Y-TZP керамике. Размер частиц должен быть менее 0.8 мкм. Концентрация стабилизирующего оксида иттрия (Y 2 O 3) должна быть 3% моль .

Процессы производства Y-TZP керамики также влияют на качество и стабильность материала. Использование порошков диоксида циркония высокой степени очистки способствует гидротермальной стабильности Y-TZP керамики. Использование метода горячего изостатического прессования (HIP - Hot Isostatic Pressing) позволяет добиться гидротермальной стабильности и уменьшению скорости спонтанной Т→М трансформации материала, тем самым, увеличивая срок службы материала .

Различные методы обработки Y-TZP керамики, такие как: фрезерование, пескоструйная обработка, полирование, тепловая обработка, оказывают влияние на микроструктуру материала и сопротивление «старению» материала .