Комнатные растения        03.08.2019   

Происхождение природных алмазов, их свойства и применение. Тайны образования алмазов в природе

Изучение генезиса алмазов является одной из важнейших проблем геологии. Существует множество гипотез происхождения, но ни одна из них не даёт точного объяснения фактов нахождения алмазов в природе и даже самих процессов образования этого минерала. Это связано с тем, что алмазы находят в сочетаниях с разными по свойствам и условиям образования горными породами. Наибольшее количество алмазов обнаруживают в щелочных ультраосновных породах, выполняющих жилы и «трубки взрыва», например, в кимберлитах Южной Африки. Также бывают единичные находки алмазов в перидотитах. Находки в андезитах и диабазах весьма сомнительны . Обычно алмазы добываются в россыпях, причём коренные источники их неизвестны. Только последние изыскания на Архангельском Севере позволили обнаружить богатейшие коренные месторождения алмазов .

Рассмотрим некоторые из наиболее популярных гипотез происхождения природных алмазов.

Алмазы происходят от неполного окисления углеродистых водородов, подобно тому, как сера сольфатаров происходит от неполного окисления сернистого водорода, весь водород которого обращается в воду, и только часть серы обращается в сернистую кислоту. Так точно нефть производит горную смолу, а смола - графит. Итак, если подвергать медленному окислению смесь углеродисто-водородных газов и воды, то, может быть, получатся алмазы.

Природные алмазы почти полностью состоят из углерода. Это означает, что напрямую - радиоуглеродным методом, возраст алмаза не определяется. Период полураспада изотопов углерода очень быстрый. Поэтому для определения возраста алмаза используют другие косвенные методы и не по углероду, а по включениям посторонних минералов, находящихся в нём (например, по пиропу). Этот факт в корне меняет трактовку данного посыла. Возраст включений в алмазах оказывается более древним, чем возраст вмещающих осадочных пород. Сейчас геологи уже могут спорить, где включения попали в алмаз: или в мантии, или в земной коре.

Магматическая теория.

Первые научно обоснованные предположения о генезисе алмазов были высказаны геологами, изучавшими африканские кимберлитовые трубки ещё во второй половине XIX в. К этому времени относятся высказывания о происхождении алмазов в результате непосредственного воздействия магмы на пласты угля . По мнению ученых, алмазы принесены на поверхность из глубинных очагов перидотитового слоя, находившихся на глубине порядка 150 км. В настоящее время большинство исследователей считают алмазы первичной составной частью кимберлитов, но расходятся во мнениях относительно места их образования .

По мнению А.В. Вильямса (исследователь алмазоносных месторождений Африки), на какой-то гипотетической неизвестной глубине существовал резервуар расплавленной магмы, которая благодаря изменениям температуры или давления уже начала кристаллизоваться и в некоторых участках этого резервуара превращаться в ультраосновные (перидотитовые, пироксенитовые и эклогитовые) породы. Кристаллизация и затвердевание ультраосновных пород, по его мнению, продолжались длительное время, в течение которого состав первоначальной магмы изменялся, пока она не приобрела состав кимберлитовой магмы. Вместе с другими кристаллами и минералами из первоначальной магмы на большой глубине выкристаллизовался и алмаз. Также в пользу магматической теории говорит тот факт, что в кристаллах алмазов можно встретить включения других минералов, что, в свою очередь, невозможно при образовании вне высоких температур и огромном давлении. Также в пользу данной теории говорит и тот факт, что алмазы срастаются, что опять же невозможно без высоких температур и огромного давления.

В Якутии был найден уникальный алмаз весом 57,8 карата. Размер светло-лимонного камня в форме октаэдра - 17х17х22 мм. Но главная особенность алмаза в том, что он состоит из двух частей: маленький алмаз находится внутри большого . Обычно внутри кристаллов находят графит, пироп, хризолит, маленькие алмазики попадаются крайне редко. Камешек задержался в росте из-за неблагоприятных условий. Когда они изменились, вокруг него выросла оболочка из нового кристалла, а маленький камень как бы являлся подложкой для образования нового большого.

Несмотря на физическую обоснованность мантийной гипотезы и, якобы, экспериментальное подтверждение её концепции в установках синтеза алмазов при сверхвысоких давлениях, существует ряд фактов, которые не объясняются с её позиций. Приведем некоторые из них.

Факт № 1. На срезах монокристаллов алмаза под действием ультрафиолетовых или рентгеновских лучей можно увидеть картины роста алмазов, аналогичные тем, что мы видим на поперечном срезе стволов деревьев. По их виду можно судить о физических и химических условиях, окружавших алмаз в период его роста. Из этих картин видно, что каждый кристалл алмаза имеет индивидуальную историю роста, изменяющуюся во времени и отличающуюся от истории роста других алмазов того же месторождения. Этот факт противоречит мантийной гипотезе, по которой считается, что алмазы росли в одинаковых термо-баростатических условиях и, как следствие, должны иметь примерно одинаковую историю роста.

Факт № 2. Генетический и геометрический центры одного кристалла алмаза обычно пространственно не совпадают. Этот факт говорит о том, что кристаллы в процессе роста были неподвижными и обтекались каким-то потоком среды, создававшем асимметрию в скорости процесса роста разных граней кристалла. В условиях верхней мантии этого быть не может, так как магма представляет собой относительно вязкую расплавленную силикатную среду, при любых перемещениях увлекающую с собой находящиеся в ней включения.

Факт № 3. Массоспектрометрический анализ алмазов показывает, что в основном они состоят из углерода мантийного происхождения с «тяжёлым» изотопным составом. Однако встречаются также алмазы с осадочным - «облегчённым» и «сверхтяжёлым» изотопным составом углерода. Наблюдаются даже значительные вариации изотопного состава внутри одного кристалла алмаза. Известно, что углерод с уменьшенной и увеличенной, относительно мантийной, концентрацией тяжелого изотопа углерода образуется только вблизи поверхности Земли за счёт процессов химического фракционирования. В условиях верхней мантии из-за высокой температуры этого не происходит.

Нельзя считать также доказательством мантийной гипотезы и тот факт, что большинство алмазов имеет мантийный изотопный состав углерода, так как вполне возможна ситуация, когда алмазы росли в приповерхностных условиях Земли из углерода или углеродсодержащих газов в период их извержения из мантии или несколько позже этого периода .

Все выше перечисленные противоречия являются лишь частью большого числа фактов, необъясняемых мантийной гипотезой происхождения алмазов.

Немагматическая теория. Немантийная теория предполагает образование алмазов в приповерхностных условиях Земли. В пользу немагматической теории говорит тот факт, что если бы алмазы, созданные при огромных давлениях и температурах, были бы подняты на поверхность, вследствие каких-либо причин то они, либо перекристаллизовались, либо взорвались в результате изменения температуры и уменьшения давления.

Существуют различные варианты этой гипотезы.

В качестве среды образования рассматриваются расплавленная и затвердевшая магма, возникающие газовые полости, солевые расплавы и водные растворы. В качестве источника углерода - термическая диссоциация углеродсодержащих газов и обратимые химические реакции.

Внутри кристаллов сибирских алмазов случается находить органические вещества и даже тонкие веточки растений! Это не вяжется с чудовищными давлениями и глубинами эклогитовой зоны, а, наоборот, подтверждает формирование алмазов в приповерхностных слоях земной коры.

Метеоритная гипотеза. Относительно недавно алмазы были обнаружены в метаморфических породах, глубина образования которых не превышает нескольких километров. И это заставило задуматься: все ли алмазы - гости из больших глубин? Есть предположение, что алмазы могут возникать и в межзвёздном пространстве . Как сообщили учёные Чикагского университета, микроскопические частицы алмазов, которые по возрасту оказались старше планет Солнечной системы и самого Солнца, были обнаружены на некоторых метеоритах . По мнению чикагского физика Р. Льюиса, они образовались в атмосфере какой-то удалённой звезды и были выброшены в космос, когда звезда взорвалась. Правда, найденные алмазы настолько малы, что триллионы их легко можно разместить на булавочной головке .

Встречаются и более крупные алмазы, заключённые в метеоритах. Так, в 1980 году сотрудники Смитсонианского института в Вашингтоне спиливали один из металлических метеоритов, найденный в Антарктиде, но вдруг заметили, что пила перестала углубляться в него, а потом сама быстро стала утончаться. Оказалось, что внутри метеорита были алмазы. Сам по себе этот факт не был новинкой. Но ранее считалось, что алмазы образуются в метеоритах при их ударе о землю, когда резко повышаются давление и температура. Антарктическая находка не испытала такого удара. Таким образом, теперь следует считать, что алмазы в метеоритах могут существовать ещё и до удара о землю, они могут, например, образоваться в результате столкновения с астероидами .

Флюидная гипотеза. Обратимся к факту нахождения гигантских алмазов в кимберлитовых трубках. Находка алмаза - супергиганта «Куллинан» (массой 621,2 г) на глубине 9 м от поверхности в бортовой части трубки сама по себе в состоянии противостоять всей сложной аргументации мантийной теории. И вот почему. Предположим, супергигант образовался в верхней мантии под давлением в сотню тысяч атмосфер и температуре несколько тысяч градусов Цельсия. А что должно происходить дальше?

Вариант 1. В случае медленного подъёма алмаза к земной поверхности падение давления будет больше, чем падение температуры, после некой критической величины (согласно условиям фазовой диаграммы равновесия графит - алмаз) он превратится в графит. В специальной литературе это явление известно как температурный барьер. До сих пор никто не придумал, как в таких условиях можно его преодолеть.

Вариант 2. В случае быстрого подъема вступает в действие другой барьер - литостатическое давление. Алмаз находился до подъёма в сверхсжатом состоянии, под давлением, предположим, 100000 атм. Если это давление резко снять, то от алмаза ничего не останется. Разлетится он на мельчайшие обломки.

Например, на Кольской сверхглубокой существуют проблемы с подъёмом керна с больших глубин. Взрываются они в керноподъёмнике, хотя глубины относительно небольшие - всего-то 8-10 км (около 2000 атмосфер) .

Гипотеза Тапперта. Исследователь Ральф Тапперт из университета провинции Альберта, Эдмонтон, Канада, опубликовал в одном из выпусков «Geology Magazine» статью, в которой выдвигает гипотезу о том, что алмазы могут представлять собой останки морских животных, которые были преобразованы в земных недрах, на глубинах много больших, чем считалось раньше .

Наряду с проблемой происхождения алмазов большой научный интерес представляет проблема определения возраста природных алмазов. Впервые учеными составлена карта регионов Земли, в которых формируются алмазы. В своей работе геологи опирались на данные землетрясений в Южной Африке, известной своими месторождениями драгоценных камней, за период 20 лет.

Эти данные затем были соотнесены с анализом примесей более чем в 4000 алмазов. В результате ученые смогли узнать возраст камней, а также состав горных пород, в которых они формировались. За небольшим исключением их возраст исчисляется миллиардами лет .

Древние римляне полагали, что бриллианты - это осколки падающих звезд. Древние греки считали их слезами богов. Камни пленили большинство цивилизаций, если не редкостью и красотой, то полезными качествами - алмазы - самые твердые вещества на планете .

Сегодня мы знаем, что атомы углерода под большим давлением (как правило, 50000 атмосфер) и на большой (примерно 200 км) глубине формируют кубическую кристаллическую решетку - собственно алмаз . Камни выносятся на поверхность вулканической магмой. Но ещё многое в образовании алмазов покрыто тайной.

Геологи разделили алмазы на три поколения.

Первое сформировалось примерно 3,3 млрд. лет назад. Эти камни из старейших горных пород - свидетели геологического детства Земли. Все они - из Южной Африки .

Второе поколение увидело свет чуть позже - примерно 2,9 млрд. лет назад. Их россыпи обнаружены уже в различных регионах. Условия их формирования немного отличаются. Анализ примесей в этих алмазах даёт основания полагать, что они сформировались внутри горных пород, которые первоначально были дном древнего мелкого моря. Каким-то образом они были погружены на большие глубины, где отложения углерода, возможно, живых организмов, при нагревании и давлении превратились в залежи алмазов.

Третье поколение камней появилось примерно 1,2 млрд. лет назад.

Известны и самые молодые - им около 100 млн. лет, однако их мало и их происхождение труднообъяснимо.

Геологи полагают, что эра крупных алмазов закончилась, и Земля больше не формирует драгоценные камни. Возможно, тогда планета была горячее, или состав геологических пород был несколько иным. Каковы бы ни были условия, они явно изменились. Алмазы - это признак геологической молодости Земли.

Таким образом, проблема происхождения и связанная с ней проблема возраста алмазов остаётся актуальной для современной геологической науки, но одно не вызывает споров - алмазы - это уникальные минералы.

Data-lazy-type="image" data-src="https://karatto.ru/wp-content/uploads/2017/08/almaz-1.jpg" alt="камень алмаз" width="300" height="200"> Алмаз – камень, который можно смело назвать самым известным на всей Земле. Он обладает необыкновенными физическими характеристиками и поражает своей красотой. С древних времен он использовался для украшений, а иногда даже выступал в роли самой твердой валюты. С историей его происхождения связано много легенд, а его лечебные и магические свойства изумляют и по сей день.

Камень с древней историей

История алмазов насчитывает даже по самым скромным подсчетам много миллионов лет. Многие ученые склонны считать, что возраст этих драгоценных минералов вполне может равняться возрасту нашей планеты. Это объясняет количество мифов, окутавших его появление. Происхождение алмазов связывают с Индией, куда тысячелетиями отправлялись искатели самоцветов необычайной красоты. Именно там, около трех тысяч лет до новой эры, эти камни получили широкое распространение. Их не подвергали никакой обработке, оставляя их в сокровищницах в натуральном виде.

До европейского континента минерал алмаз добрался значительно позднее, когда о нем разузнал Александр Македонский. Им был организован поход в Индию, чтобы завладеть доселе невиданными драгоценностями. Легенда гласит, что смелому воину пришлось вступить в схватку со змеями, которые стояли на страже этих богатств.

И только к концу периода Средневековья в бельгийском городе Брюгге, где была настоящая Мекка для людей, торговавших самоцветами, придумали, как придать алмазу уже привычный для нас блеск и искристость. Его стали подвергать огранке, и появился камень бриллиант, что означало «блестящий». Благодаря своим сверкающим граням, он получил невероятную популярность и стал цениться еще сильнее. Камень стали добывать в очень больших объемах, и индийские месторождения истощились. Но это только подстегнуло активные поиски новых, и такие вскоре обнаружились в Бразилии.

Png" alt="" width="60" height="51"> Сейчас добычу ведут в Австралии, на африканском континенте, в России.

Старое название алмаза у жителей Индии звучало как «фарий», римляне дали ему имя «диамонд». Греки оценили его качества и стали называть «адамасом», что означало «несокрушимый», «непревзойденный», а у арабов его нарекли «алмасом», что в переводе на русский язык означает «самый твердый».

Свойства и основные характеристики

Сегодня существует несколько теорий о том, как образуются алмазы. Например, согласно одной из них, алмаз в природе появляется тогда, когда происходит понижение температуры силикатов (соединений кремния с кислородом), находящихся в мантии коры Земли. На поверхности же они оказываются после сильных глубинных взрывов. Кроме того, есть мнение, что эти кристаллы образовались при падении метеоритов в результате одновременного воздействия высокого давления и температуры.

Png" alt="" width="47" height="78"> Алмаз, формула которого обозначается одной буквой С, раньше добывали путем бережного перемывания морских или речных россыпей песка. Тогда была небольшая вероятность отыскать такой желанный кристалл, который мог оказаться включением в другие горные породы.

Но когда в конце девятнадцатого века были обнаружены кимберлитовые трубки, добыча стала вестись уже другим способом. Такое название получали участки горной породы, содержащие ценные минералы, имеющие вертикальную коническую форму. .jpg" alt="камень алмаз" width="250" height="181">
Интересно то, как выглядит алмаз в необработанном виде, – это мелкие (до 5 мм) частички, матовые и шероховатые. Мелкие кристаллики могут срастаться между собой.

Физические свойства алмаза отличают его от других минералов, а ведь состоит он только из атомов углерода. Самыми удивительными его качествами являются следующие:

  1. Плотность алмаза по шкале Мооса равняется 10. Это самый максимальный показатель, который подтверждает исключительную твердость алмаза. Обрабатывать его крайне сложно, потому что он повреждает любой материал, а сам остается без каких-либо следов.
  2. Удивительна и способность камня, которая заключается в возникновении электрических импульсов, если с ним взаимодействуют заряженные частицы.
  3. Интересны и свойства алмаза противостоять действию сильных кислот. Они не могут оказать никакого воздействия, а вот при реакции с расплавами щелочи, селитры и соды возникает процесс окисления, способный «сжечь» образец.
  4. Температура плавления алмаза составляет 3700-4000С°. Если направить на образец струю кислорода, то при температуре около 800С° он загорится голубым пламенем. При 1000С° он сгорит, а нагретый до 2000 С° в вакууме перейдет в графит.

Интересно и строение алмаза, которое объясняет его невероятную прочность. Кристаллическая решетка алмаза имеет форму куба, на вершинах которого и внутри расположены атомы углерода, прочная связь между которыми и наделяет минерал твердостью.

Области применения

Data-lazy-type="image" data-src="https://karatto.ru/wp-content/uploads/2017/08/almaz-3.jpg" alt="камень бриллиант" width="220" height="167">
Применение алмаза не ограничивается использованием в ювелирной промышленности, в которой предпочтение отдается только экземплярам самого высшего качества.

Применение алмазов распространено в самых различных областях, среди которых:

  • Медицинские приборы и инструменты. В сфере медицины использование прозрачных кристаллов очень широко. Благодаря таким приборам, позволяющим совершать тонкие разрезы, ускоряется время заживления в послеоперационный период. Скальпели, изготовленные из такого материала, долго остаются острыми. Структура алмаза делает возможным его применение в сфере производства имплантов.
  • Высокая теплопроводность алмаза делает его незаменимым для использования в электронике, чтобы не допускать перегрева приборов.
  • Свойства и состав алмаза объясняют его использование в области телекоммуникаций. Его ценят за способность выдерживать скачки напряжения и температур.
  • Применяют его и в горнодобывающей промышленности для добавления эффективности буровому долоту.

Интересно, что только 15% кристаллов, которые добываются в мире, можно использовать для того, чтобы огранить их и получить бриллианты. Около 44-46% являются «условно пригодными» для того, чтобы подвергать их огранке. Оставшийся процент добываемого сырья идет как раз на промышленные и производственные нужды.

Как из алмаза получается бриллиант?

Многие задаются вопросом, что такое бриллиант. На самом деле это все тот же алмаз, только подвергнутый огранке. Обработка происходит в несколько этапов, в ходе которых на кристалле убираются различные изъяны. Камни подвергаются шлифовке и полировке.

Jpg" alt="алмаз круглой огранки 57 граней" width="200" height="192"> Процесс огранки очень долгий и трудоемкий. Чтобы придать кристаллу нужную форму и создать ровные грани на поверхности самого твердого минерала, используют диски из чугуна, на которые нанесено алмазное напыление. Важно правильно расположить грани, учитывая то, как на них будет падать свет. Мастерство огранки заключается в том, чтобы заставить камень сиять всеми цветами радуги. Свойства бриллианта позволяют ему преломлять лучи света по-разному, что и вызывает такой яркий блеск. Наиболее сильно эти свойства раскрываются при круглой огранке в 57 граней.

В результате огранки размеры бриллиантов значительно уменьшаются, но на стоимость это не влияет. На работу с крупным образцом могут уйти месяцы. Для этого типа камней используют три основных вида огранки кристаллов:

  • Для обработки камушков круглой формы применяют бриллиантовый вид. В этом случае важно, чтобы выдерживался шахматный порядок для треугольных или ромбовидных граней на каждом ярусе.
  • Прямоугольные образцы подвергаются ступенчатой огранке, при которой треугольные или трапециевидные грани идут друг над другом.
  • Для огранки мелких образцов применяется метод «розы» или «розетки».

Характеристики бриллиантов различаются и по степени прозрачности. Природные минералы не могут похвастаться абсолютной чистотой и имеют различные включения. Чем таких дефектов меньше, тем выше стоимость.

Разнообразие цветов

Большинство ошибочно считает, что разновидность алмаза ограничивается только прозрачными бесцветными кристаллами. На самом же деле существует достаточно много различных цветовых вариаций, которые иногда оцениваются намного дороже классических.

Jpg" alt="" width="80" height="83"> Желтый бриллиант встречается довольно часто. Такой цвет минерал получил благодаря атомам азота, которые проникли в его кристаллическую решетку. Чем насыщеннее такой цвет, тем дороже будет стоить образец. Есть и более темные вариации, которые встречаются в Австралии. Там можно встретить и коньячный бриллиант, и рыжий алмаз.

Jpg" alt="" width="80" height="83"> Синий алмаз – настоящая редкость. Это может быть природная разновидность, получившая свой оттенок из-за наличия атомов такого химического вещества, как бор. Синий бриллиант может получиться и путем облагораживания минерала.

Jpg" alt="" width="80" height="83"> А вот голубой алмаз (его крупные экземпляры) настолько редкий, что позволить его себе могут только держатели роскошных коллекций. Более распространенным является алмаз, цвет которого стал голубым в результате нагревания и повышения давления.

Каждый ювелир не прочь заполучить в свою коллекцию зеленый алмаз, получивший свой цвет из-за природной радиации. Еще реже можно встретить красные алмазы. Их, как розовый алмаз, добывают на месторождениях Австралии.

На этом виды алмазов не заканчиваются. Существуют даже черные и белые бриллианты.

Необыкновенные свойства

Data-lazy-type="image" data-src="https://karatto.ru/wp-content/uploads/2017/08/almaz-5.jpg" alt="кольцо из золота с бриллиантом" width="200" height="136">
Бриллиантам в старину приписывались самые разные удивительные свойства. Даже современные специалисты отмечают невероятную энергетику этого минерала. Его воздействие на организм человека часто использовалось для избавления от различных недугов, как физических, так и психических. Их и сейчас используют в следующих областях медицины:

  1. С помощью этих самоцветов можно решить проблемы с сердцем. Камень поможет нормализовать работу сосудов и сердечной мышцы, снизит артериальное давление.
  2. Положительное воздействие переливающиеся кристаллы оказывают на тех людей, у кого есть проблемы с психикой. Воздействие камня снимет стрессовое состояние, успокоит нервы, поможет нормализовать сон.
  3. Энергия камней хорошо влияет и на женское здоровье, помогая излечиться от ряда гинекологических проблем.
  4. Славится минерал и своими противовоспалительными свойствами. С его помощью можно справиться с проблемами дерматологического характера. Оказать общеукрепляющее воздействие на все внутренние органы.

Чтобы почувствовать на себе целебную силу камня, можно на 24 часа положить кристалл в воду, а потом пить этот алмазный настой, который сможет укрепить иммунитет и придать тонус.

Jpg" alt="кольцо с бриллиантом" width="200" height="244"> Магические свойства бриллиант проявляет также активно. Он становится мощным защитником своего владельца, оберегая его от любого негативного воздействия извне. В древности правители всегда брали алмаз с собой на пиры, зная, что он сможет предотвратить отравление. Человеку с чистыми помыслами он сможет подарить уверенность в себе, благополучие в личной жизни, успех в карьере. Его издревле использовали для совершения магических ритуалов. Особенно эффективен в этом случае камень желтого оттенка. Красный же кристалл настолько мощный, что обуздать его получится не у всех. А вот белый сможет стать оберегом для любого человека.

Он раскроет свои качества, если сочетать его с золотом и носить его на левой руке. Кольцо дарует мужчинам удачу в игре и успех у женщин. Красивые серьги или колье придадут дамам очарования и помогут найти любовь. Наиболее активно камень раскроет свою силу перед Овнами, а вот Рыбам лучше выбрать себе другой талисман.

Тайна алмаза будоражит многих и сейчас. Этот необыкновенный камень таит в себе множество еще неизученных качеств. С некоторыми из них связаны мистические истории. Например, кристалл «Надежда» приносил своим владельцам только несчастья.

Удивительными бывают и размеры найденных самоцветов. Когда на одном из рудников нашли алмаз «Куллинан», весил он более трех тысяч карат. Большая популярность, что неудивительно, привела к тому, что ученым захотелось изготовить его искусственную вариацию. Так в ХХ веке, воздействуя на графит давлением и температурой, были получены синтетические аналоги. Отличить их от настоящих очень сложно. Часто с такой задачей могут справиться только профессионалы.

Png" alt="" width="80" height="80"> Чтобы отличить оригинал от подделки, нужно обращать внимание на количество граней (классическая огранка предполагает 57) и их четкое очертание без двоения при рассматривании через лупу, увеличивающую в 12 раз.

  • Настоящий образец невозможно поцарапать, даже проведя по нему наждачной бумагой.
  • Если держать его в руке, то он будет оставаться прохладным, тогда как подделка быстро нагреется до температуры тела.
  • А если капнуть на поверхность каплю жира, то она останется без изменений, в то время как на подделке она сначала распадется на меньшие капельки.

Несмотря на удивительную твердость, изделия из бриллиантов нужно хранить с особой аккуратностью. При загрязнениях промывать их мыльным раствором и держать отдельно от других украшений. Не пренебрегайте помощью ювелиров. Они смогут проверить крепления и очистить камень ультразвуком.

С давних времен люди делают украшения из драгоценных камней. Особенно ценятся ювелирные изделия с бриллиантами, привлекающими внимание своей необычайной прозрачностью, причудливыми переливами и ярким блеском.


Бриллиант – это ограненный алмаз. Чаще всего он бесцветный, хотя иногда попадаются камни с желтым, сероватым или зеленым оттенком. Но что же такое алмаз? Из чего он состоит и как образуется?

Что такое алмаз?

Алмаз – самый твердый природный минерал, добываемый из россыпных залежей или кимберлитовых трубок. Его можно найти практически на всех материках, за исключением Антарктиды, но главные месторождения находятся в Африке, Канаде, России и .

Первые камни были обнаружены совершенно случайно. Их открытием человечество обязано африканским детям, игравшим с блестящими камушками. Найдены они были в 1870 году в ЮАР возле городка Кимберли, от чего все алмазоносные породы стали называть кимберлитами.

В России алмазы впервые обнаружили рядом с Пермью в 1829 году. Что интересно, находка тоже принадлежала ребенку. Во время работы на золотодобывающем прииске 14-летний крепостной Павел Попов нашел алмаз при промывании золота.


Благодаря этому камешку он получил вольную, а затем показал место обнаружения алмаза научной экспедиции во главе с немецким физиком Александром Губольтом. С тех пор в России было открыто немало месторождений, включая богатые залежи в Якутии.

Из чего состоит алмаз?

Среди драгоценных камней алмаз является единственным минералом, состоящим только из одного элемента. В его структуре лежит кристаллический углерод, обладающий уникальными свойствами.

Алмаз имеет самую высокую твердость, низкий коэффициент трения и высочайшую температуру плавления от 3700 до 4000 °C. Ценность камней определяется в специальных единицах – каратах. Один карат равняется 0,2 граммам.

Обычно алмазы имеют небольшой вес, но иногда попадаются действительно крупные экземпляры. Самым большим в мире был алмаз «Куллинан», обнаруженный в 1905 году в южноафриканской шахте Premier Mine.

Его вес в неограненном виде составлял 3106,75 карата, то есть более 620 граммов. В дальнейшем камень подвергли обработке и разделили на 9 крупных бриллиантов и 96 мелких.

Как образуются алмазы?

Происхождение алмазов достоверно не установлено. Ученые выдвигают множество различных гипотез, но большинство придерживается мнения, что камни формировались в мантии, а затем поднимались ближе к поверхности. По разным оценкам их возраст составляет от 100 млн. до 2,5 млрд. лет.


Существуют алмазы и внеземного происхождения. В частности, крупное месторождение таких камней было обнаружено рядом с сибирским кратером Попигай, образованным в результате падения астероида примерно 35 млн. лет назад.

Что такое синтетические алмазы?

Алмазы используются не только для украшений, но и в промышленных целях (при изготовлении крепких сверл, резцов, ножей). Потребность широкого применения вынудила ученых создавать искусственные алмазы, выращенные в лабораториях.

Их называют синтетическими, хотя такое определение не совсем корректно. На самом деле искусственные алмазы не содержат синтетики и по своему составу аналогичны природным. Синтетические камни изготавливают двумя способами – путем химического осаждения из пара (CVD) и под высоким давлением и температурой (HPHT). Существует еще несколько методов, но они не имеют коммерческого успеха.

Как делают бриллианты?

Чтобы алмаз приобрел красивую форму и начал переливаться разноцветными огоньками, его превращают в бриллиант. Основным способом обработки камней является круглая огранка, при которой на алмазе делают 57 граней.


Бывают и более сложные методы, позволяющие выполнить до 240 граней или создать бриллиант определенной формы – розой, таблицей, клиньями. Иногда качественно выполненная работа превышает стоимость самого алмаза, а неправильная огранка, напротив, способна уничтожить камень или сделать на нем дефекты.

Группа ученых из Германии и Канады определила, как именно алмазы, формирующиеся на колоссальной глубине, оказываются в кимберлитовых трубках. До недавнего времени эта важная деталь формирования самых главных драгоценных камней оставалась неясной. Теперь ученые надеются, что сделанное ими открытие поможет лучше понять динамику процессов формирования алмазов и, чем черт не шутит, поможет в будущем искать новые месторождения.

Экзотика

Чистый углерод встречается в природе в нескольких основных формах. Наиболее привычная всем - графит. В этом материале атомы углерода организованы в слои. В каждом слое атомы C располагаются в вершинах гексагональной (шестиугольной) решетки. Слои довольно слабо связаны между собой. Благодаря этому (то есть слабой взаимосвязи) Константин Новоселов и Андрей Гейм в 2004 году смогли получить графен - ровно один слой графита, используя обычный скотч, хотя это и .

Надо сказать, что алмаз не является самой твердой аллотропной модификацией углерода. В настоящее время этот титул принадлежит специально обработанному лонсдейлиту. Структура его кристаллической решетки напоминает структуру решетки алмаза, за что данный материал даже получил имя гексагональный алмаз. Как показало компьютерное моделирование, обработанный образец лонсдейлита разрушается при давлении 152 гигапаскаля. Подобные материалы образуются при падении метеоритов.

Алмаз - кстати, по-гречески "адамас", что значит "несокрушимый" - является прямым родственником графита и угля, или, как говорят ученые, аллотропной модификацией углерода (как следствие, например, при температуре 2000 градусов Цельсия в струе кислорода алмаз сгорает почти без следа, превращаясь в углекислый газ). В нем атомы углерода расположены иным образом, нежели в графите. Атомы расположены в кубической гранецентрированной решетке - каждый атом углерода расположен в центре тетраэдра, вершинами которого служат четыре соседа. Среди прочего, именно подобным расположением атомов объясняется необычайная твердость алмаза - образец разрушается при давлении в 97 гигапаскаль.

Надо сказать, что эта модификация углерода издревле привлекала людей своими необычными оптическими свойствами. Дело в том, что у алмаза большие показатели преломления и дисперсия. Как следствие, в случае правильной огранки (то есть когда мы говорим по сути о бриллианте) он очень красиво сверкает, разлагая, среди прочего, свет на спектральные составляющие. Благодаря этой своей в целом интересной, но тривиальной, с точки зрения науки, особенности алмазы относятся к драгоценным камням. В наше время алмазы массово используются в промышленности благодаря своей твердости.

Как возникают алмазы? С точки зрения геологии, есть несколько способов. Так как ученые из Германии и Канады, о которых шла речь в начале статьи, интересовались наиболее распространенным - магматическим - способом, то начнем с наименее вероятных. Ученым известно, что алмазы образуются, с одной стороны, при колоссальном давлении - 50000 атмосфер - и относительно небольшой температуре - 900 -1300 градусов по Цельсию. По мнению исследователей, такие условия могут возникать, например, при падении метеоритов. К таким алмазам относят, например, обнаруженные в кратере Попигай в Сибири.

Еще один способ, крайне редкий, это превращение графита в алмаз. Несмотря на то, что эти два материала - родственники и подобный способ получения алмазов был описан в "Утиных историях" (Скрудж Макдак использовал арахис, чтобы привлечь слонов, которые своим топотом превратили уголь в истощенном месторождении в алмазы), в мире существует единственное месторождение, алмазы в котором появились именно в результате такого процесса. Это Кумдыкульское месторождение, и оно находится в Северном Казахстане, в 25 километрах к юго-западу от города Кокшетау. Алмазы образовались здесь в результате погружения углеродсодержащих осадочных пород в мантию. Такие алмазы называются алмазами метаморфогенного (то есть преобразования под действием температуры и давления) типа.

Сюда же можно отнести так называемые карбонадо - черные алмазы, относительно которых среди ученых до сих пор нет консенсуса. Согласно одному мнению, они образовались в результате падения метеорита, согласно другому - они появились из органического углерода. На это указывает, в частности, соотношение разных изотопов этого элемента в алмазе.

Кимберлит - не единственный материал, связанный с алмазами. В 70-х годах прошлого века в Австралии было открыто богатейшее месторождение преимущественно промышленных алмазов, связанное с лампроитами. Это также вулканическая порода. Примечательно, что алмазы, обнаруженные в разных породах, по свойствам почти не отличаются.

Вместе с тем обычные прозрачные алмазы формируются, с точки зрения геологии, довольно просто. Сначала происходит извержение вулкана. Если все сложилось удачно (в частности, попалась правильная магма), то в том месте, где она прорывалась на поверхность, образуется коническая кимберлитовая трубка. Порода названа так в честь города Кимберли в ЮАР, где впервые эта порода была обнаружена в конце XIX века - до этого момента алмазы находили в руслах рек (так называемые вторичные месторождения), куда они попадали в результате размыва тех же кимберлитовых трубок.

Образование кимберлитовой трубки может происходить только в случае подъема магмы со значительной глубины - примерно 150 километров, что как минимум втрое глубже залегания "обычной" магмы для вулканов. Физические условия, о которых говорилось выше, существуют только там, где располагаются кратоны - ядра материков. Именно эта особая магма поднимается с глубин и, вырываясь на свободу, дает алмазы.

Лучшие друзья девушек

Надо сказать, что в этой теории есть слабое место. Как уже говорилось выше, алмазы горят. Чистого кислорода в мантии, конечно, нет, однако длительное пребывание алмазов в раскаленной толще все равно должно приводить к их уничтожению. Из этого вытекает, что та самая особая магма, о которой говорилось выше, поднимается на поверхность очень и очень быстро. Геологи раньше обходили эту деталь стороной (поднимается и поднимается, что поделать), поэтому точные причины этого процесса были неясны.

В рамках новой работы ученые использовали специальную плавильню, чтобы получить вещество, напоминающее магму из земных глубин. В частности, расплав содержал большое число карбонатов - солей угольной кислоты. Ученые предположили, что в процессе своей жизни такая магма встречается с магмой с большим количеством пироксенов (группой минералов, часто породообразующих, содержащих кремний). Из-за этого способность расплава растворять разного рода вещества - например, углекислый газ - снижается в несколько раз.

Чтобы проверить свою гипотезу, исследователи добавили в расплав пироксены и стали ждать. По словам одного из ученых, Келли Рассела, он был шокирован, когда буквально за 20 минут горячее вещество превратилось по сути в пену. Из этого ученые заключили, что подобные пенные карманы вполне могут образовываться на глубине около 150 километров.

Конец

Что же происходит, когда такой карман образуется? На огромной скорости он начинает всплывать. При этом скорость всплытия может достигать 40 километров в час. При этом карман при всплытии ускоряется. По словам ученых, это может иметь существенные последствия для теории образования алмазов. Быть может даже, это поможет в поиске новых месторождений. Как бы то ни было, но новая работа позволяет прояснить детали формирования алмазов. А дьявол, как известно, в этих деталях и кроется.

Где растут алмазы

Первые эксперименты по синтезу алмаза в Институте геологии и геофизики СО АН СССР относятся к 1979 г. В результате многолетних исследований к настоящему времени в Институте геологии и минералогии им. В.С. Соболева СО РАН создана уникальная аппаратура высоких давлений БАРС (Беспрессовый Аппарат Разрезная Сфера) и комплекс оригинальных методов выращивания крупных кристаллов алмаза с заданными свойствами, разработаны экспериментально обоснованные модели генезиса природных алмазов. В ячейке высокого давления крошечный кристаллик алмаза постепенно растет и на седьмые сутки достигает массы 6 карат. Процесс роста идет в расплаве металлов при давлении 60 тыс. атмосфер и температуре 1500 °С. В результате получается алмаз максимально высокого качества, уникальные свойства которого можно использовать в современных устройствах для достижения рекордного уровня параметров приборов твердотельной электроники. Успехи ученых лаборатории процессов минералообразования в условиях высоких давлений ИГМ СО РАН позволили начать работы по практическому применению монокристаллов синтетического алмаза. Весьма актуальным является экспериментальное моделирование процессов природного алмазообразования. Специалисты лаборатории установили, что процессы зарождения и роста алмаза контролируются главным образом содержанием карбонатов, Н 2 О, СО 2 и щелочей в глубинных флюидах и расплавах. Впервые экспериментально доказано, что карбонаты могут быть не только средой кристаллизации, но и источником углерода алмаза...

Алмаз является самым удивительным и таинственным минералом. Он всегда привлекал внимание ученых и постепенно раскрывал свои тайны. Достаточно вспомнить истории о том, как в 1772 г. французский химик Лавуазье на глазах изумленной публики сжег алмаз, доказав, что он состоит из углерода; как в 1913 г. отец и сын Брегги расшифровали структуру этого минерала; как в «голубой земле» Южной Африки были найдены первые алмазы. А еще можно вспомнить о многочисленных попытках получения искусственных кристаллов, об экзотических опытах Муассана, синтезировавшего «алмазы», которые потом оказались карбидами. Конечно, это уже история, а мы поговорим об актуальных проблемах сегодняшней алмазной науки и немножко заглянем в завтра…

Броня крепка…

Анализ существующих методов получения алмаза показывает, что подавляющее большинство из них позволяет реализовать лишь синтез алмазной фазы в кратковременных процессах спонтанной кристаллизации. Одним из основных методов, обеспечивающих выращивание достаточно крупных монокристаллов, является метод температурного градиента, в котором алмаз растет из раствора углерода в расплаве металлов. Этот метод реализуется при давлениях 50-60 тыс. атмосфер в диапазоне температур 1400-1600 °С. Следовательно, для выращивания крупных кристаллов алмаза нужна прежде всего аппаратура, способная создавать такие условия.

Лидеры в данной области – корпорации Де Бирс, Сумитомо Электрик Индастриз и Дженерал Электрик используют для получения алмаза аппараты Belt , оснащенные мощным прессовым оборудованием массой до 200 т. В нашей стране аппаратуры такого класса не было.

В 1970-х гг. в Институте геологии и геофизики СО АН СССР по инициативе д. г. -м. н. профессора А. А. Годовикова и к. г. -м. н. И. Ю. Малиновского начались работы по созданию аппаратов высокого давления. Здесь уместно сделать отступление и сказать, что в это время бриллианты из первых крупных кристаллов синтетического алмаза, полученных учеными из Дженерал Электрик, уже были подарены английской королеве. В 1978 г. мы начали работы по тематике, связанной с синтезом алмазов. А в 1979 г. уже получили первые алмазы! Очень мелкие и черные. Посмотреть на первые алмазы приходили из всех лабораторий. Коллеги из европейской части страны нашей радости не понимали и говорили обидные слова про изобретение велосипеда и его квадратные колеса. Время шло, заводы тоннами производили алмазные порошки по «скорострельным» технологиям. Наши конструкторы Э. Н. Ран, Я. И. Шурин и В. Н. Чертаков под руководством И. Ю. Малиновского делали все новые и новые аппараты, а мы старались научить эти установки работать и учились сами.

В стране по-прежнему не было крупных синтетических алмазов. Лишь к концу 1980-х гг. в Новосибирске был создан многопуансонный аппарат «разрезная сфера», на котором впервые в России мы получили крупные кристаллы синтетического алмаза ювелирного качества массой до 1,5 карат (Пальянов и др., 1990). Для получения крупных кристаллов алмаза нужно было не только создать высокие давления и температуру, но и поддерживать эти параметры постоянными в течение нескольких дней и даже управлять при таких условиях сложнейшими процессами роста кристаллов.

В результате совместных исследований с сотрудниками Американского геммологического института (The Gemological Institute of America ) в авторитетном международном журнале Gems & Gemology появилась статья с многозначным названием: «Геммологические свойства русских кристаллов синтетического алмаза ювелирного качества» (Shigley et al. , 1993). После аттестации новосибирских кристаллов в ведущих научных центрах разработанная аппаратура и комплекс технологий были признаны и получили в зарубежной литературе соответствующие названия: БАРС-аппаратура , БАРС-технологии и БАРС-кристаллы . БАРС – это беспрессовый аппарат разрезная сфера.

Три тонны высококачественной специальной стали в каждой установке высокого давления – это наша броня, которая действительно крепка. За созданием современных БАРСов стоит огромный труд десятков сотрудников института, которые в разные годы внесли свой посильный вклад в эту разработку. Исследования в области создания синтетических алмазов неизменно поддерживались академиками Н. Л. Добрецовым и Н. В. Соболевым.

Современный БАРС совсем не похож на другие установки высокого давления. Он открывается подобно гигантской ракушке, а внутри, как жемчужина, расположен стальной шар диаметром 300 мм. Шар симметрично разрезан на одинаковые сегменты. Представьте, что вы разрезали арбуз на восемь равных частей. Получились такие трехгранные пирамидки со сферическим основанием. Теперь положили их на стол коркой вниз и срезали параллельно столу самое вкусное. Получили сегменты (или пуансоны ) первой ступени.

Если вы снова соберете эти сегменты в сферу, то внутри нее получится полость в форме октаэдра. В этой полости расположены пуансоны из карбида вольфрама (твердый сплав или победит) – только этот материал выдерживает огромные давления. Шесть пуансонов второй ступени собираются в форме октаэдра, внутри размещается ячейка высокого давления. Именно в ней происходят таинственные процессы зарождения и роста кристаллов алмаза. При достижении необходимых температуры и давления углерод, находящийся в наиболее горячей зоне (исходно это графит), растворяется в расплаве металлов и транспортируется в более холодную зону, куда помещен маленький затравочный кристаллик алмаза, который постепенно растет и на четвертые сутки достигает двух карат. Конечно, это только в том случае, если вы все сделали правильно.

Алмазы бывают разные

Хорошо известно, что алмаз имеет высочайшую твердость, которая обеспечивает традиционное его использование в технике. Но алмаз, кроме того, обладает и другими уникальными свойствами. Это ковалентный широкозонный полупроводник с теплопроводностью, в пять раз превышающей теплопроводность меди. Его характеризует высокая подвижность носителей тока, химическая, термическая и радиационная стойкость, а также способность легироваться электрически активными примесями. Мы привыкли к тому, что само слово «алмаз» автоматически подразумевает полезность всего, что с ним связано. И это совершенно справедливо.

Однако реальная картина выглядит гораздо сложнее и интереснее. Нас прежде всего интересует максимально высокий уровень качества, который условно назовем приборным. Именно на этом уровне алмаз должен проявить себя в современных приборах и устройствах как монокристалл, обладающий уникальными свойствами. Современная микроэлектроника на базе германия и кремния использует практически предельные возможности этих материалов. Поскольку алмаз является последним в ряду полупроводников с алмазным типом структуры, то именно он рассматривается как материал, на котором может быть достигнут рекордный уровень параметров приборов твердотельной электроники.

Массированный характер инвестиций в «алмазные» проекты за рубежом привел к впечатляющим результатам, однако эпоха широкого применения алмаза в высокотехнологических областях науки и техники пока еще не наступила. Одной из сдерживающих причин эксперты считают недостаточное качество как природных, так и синтетических алмазов. Уже давно ясно, что, даже лучшие из природных алмазов крайне неоднородны по дефектно-примесному составу и, соответственно, различны по свойствам.

Следовательно, задачи выращивания крупных высококачественных монокристаллов алмаза, исследование их реальной структуры и свойств весьма актуальны, поскольку в итоге направлены на получение алмазов с заданными свойствами для высокотехнологических применений. Следует подчеркнуть, что в таких индустриально развитых странах, как США и Япония, исследования и разработки по этому направлению проводятся в рамках крупных национальных программ. Да и у нас в стране ситуация в этой области постепенно улучшается.

О полезных и вредных дефектах… и немного о радуге

Итак, современной науке и технике нужны высококачественные кристаллы алмаза с различными полезными свойствами. Задача непростая, если учитывать наличие дефектов в кристаллах.

Дефектов много, они разные и условно делятся на две группы: «вредные» и «полезные». Например, включения – частички среды кристаллизации, которые кристалл захватил в процессе роста, дислокации – линейные нарушения структуры и планарные дефекты – микродвойники и дефекты упаковки. Это дефекты первой группы. Желательно, чтобы их в кристалле было как можно меньше или не было совсем.

Другая группа – это примесные и собственные дефекты , или дефектно-примесные центры. Это «полезные» дефекты, поскольку именно они определяют многие свойства кристаллов. Важно понять, какие центры отвечают за то или иное свойство, а затем создать в кристалле нужную концентрацию этих центров.

Задача сложнейшая, учитывая, что процесс роста кристаллов алмаза идет при давлении 60 тыс. атм. и температуре 1500 °С. Тем не менее мы уже научились получать кристаллы без включений, минимизировать плотность дислокаций и дефектов упаковки.

Высококачественный кристалл синтетического алмаза желтого цвета. Почему? Такое свойство обеспечивается примесью азота: достаточно 10-20 атомов азота на миллион атомов углерода. Азот «внедряется» из воздуха, который адсорбируется на исходных реактивах, и этого достаточно, чтобы 100 атомов углерода из миллиона были замещены атомами азота, а кристалл приобрел насыщенный желтый цвет. Но ведь природные алмазы бесцветны, хотя содержание примеси азота в них, как правило, на порядок выше, чем в синтетических. И снова вопрос – почему?

В зависимости от концентрации бора кристаллы будут голубые, синие или даже черные

Дело в том, что атомы азота могут образовывать в алмазе различные центры и, соответственно, свойства кристаллов будут изменяться, в том числе и их цветовые характеристики. Подробнее о строении многочисленных примесных центров в структуре алмаза можно прочитать в замечательной книге к. ф. -м. н. Е. В. Соболева «Тверже алмаза» (Соболев, 1989). А нам нужно разобраться, в каких условиях образуются те или иные центры, и только тогда можно будет получить кристаллы с заданными свойствами.

Добавим в среду кристаллизации титан, алюминий или цирконий. Это геттеры , они соединятся с азотом, и мы получим бесцветные алмазы. Это будут кристаллы не просто бесцветные, а безазотные. Именно такие кристаллы обладают наивысшей теплопроводностью (до 2000 Вт/ (м К)). Но среди природных алмазов безазотные кристаллы встречаются очень редко и далеко не в каждом месторождении.

Теперь в среду кристаллизации, содержащую геттеры, добавим бор. (В лабораторных условиях бор легко входит в структуру алмаза, когда нет азота.) В зависимости от концентрации бора кристаллы получатся голубого, синего или даже черного цвета. Такой алмаз является полупроводником с p-типом проводимости. В природе они встречаются еще реже, чем безазотные, а в отечественных месторождениях вообще не обнаружены.

Комплексные исследования процессов роста кристаллов алмаза и изучение их реальной структуры и свойств позволяют сегодня не только воспроизвести основные типы кристаллов, существующие в природе, но и получить алмазы с новыми свойствами, аналогов которым в природе не существует.

Например, в плане создания перспективной «алмазной электроники» чрезвычайно актуальна проблема получения кристаллов алмаза, легированных электрически активными примесями. Мы уже говорили о легировании алмаза бором и получении полупроводниковых алмазов с р-типом проводимости. Вместе с тем для применения алмазов в микроэлектронике необходимо решение ряда принципиальных проблем, одной из которых является получение полупроводниковых алмазов с n-типом проводимости.

Примеси фосфора или серы способны, в принципе, образовывать донорные центры в алмазе и давать n-тип . Однако «загнать» их в структуру алмаза очень непросто. Для этого нужно взять в качестве растворителей расплавы фосфора или серы. Кристаллы, полученные в расплаве фосфора, пока очень мелкие – первые сотни микрон. Зато цвет их – фиолетовый! Инфракрасная (ИК)-спектроскопия подтверждает, что фосфор вошел в структуру алмаза. Так что первый шаг сделан и в этом направлении.

Управлять свойствами алмаза можно не только в процессе роста. Так, с помощью тех же аппаратов БАРС в лаборатории разработаны методы термобарической обработки алмазов, направленные на изменение их реальной структуры и физических свойств. Фактически это отжиг при высоком давлении, однако условия такого отжига реализуются при рекордных параметрах – давлении 80 тыс. атмосфер и температуре до 2500 °С. Оказывается, что в таких условиях происходит не только трансформация дефектно-примесной структуры алмаза (например, агрегация одиночных атомов азота в пары и другие более сложные центры), но и аннигиляция более крупных неоднородностей структуры (например, дефектов упаковки).

Берем коричневые кристаллы алмаза, содержащие азот в форме одиночных замещающих атомов (С-центры); подвергаем воздействию нужной температуры и давления. Атомы азота должны образовать пары (А-центры), а алмазы – обесцветиться.Однако после экспериментов кристаллы стали не бесцветными, как ожидалось, а зеленоватыми. На ИК-спектрах действительно наблюдаются структуры, соответствующие А-центрам. Зеленый оттенок – это проявление никель-азотных центров. Алмаз растет из раствора углерода в расплаве железа и никеля. Оказывается, что никель тоже способен встраиваться в структуру алмаза и образовывать различные никель-азотные центры.

Так что отжиг под давлением оказался удачным методом воздействия на алмазы. Это направление успешно развивает к. г. -м. н. А.А. Калинин. Именно после его экспериментов по отжигу и облагораживанию природных алмазов с коричневой окраской многие увлеклись улучшением цветовых характеристик природных алмазов, забывая иногда указать в сертификате, что камень подвергался искусственным воздействиям.

В названии данного раздела речь шла о радуге. Оранжевые, желтые, зеленые, синие и фиолетовые алмазы уже были. Какие еще цвета остались? Красный. Берем исходный кристалл с небольшой концентрацией С-центров, облучаем электронами – создаем вакансионные центры и затем нагреваем до 200 °С. Получаем удивительный цвет … морской волны. Нагреваем тот же кристалл до 1000 °С в защитной атмосфере – получаем пурпурно-красный. Вот теперь в алмазной радуге есть все цвета.

Перспективы применения

В 1980-х гг. исследования по физике алмаза были невероятно популярны. Отдельные лаборатории и даже целые институты занимались алмазными проблемами; проходили регулярные всесоюзные алмазные конференции. Но в стране не было синтезировано кристаллов алмаза крупнее одного миллиметра. Всем нужны были хорошие крупные кристаллы, но уровень развития техники и технологий не позволял их выращивать. Сегодня совсем другая ситуация: через кристалл синтетического алмаза, полученный в нашей лаборатории, можно смотреть на соседний институт и прилегающие к нему территории. Значит, есть все основания для кооперации со специалистами из различных отраслей знаний, чтобы начать работы по применению монокристаллов синтетического алмаза в высокотехнологических сферах науки и техники.

Одно из перспективных направлений применения синтетического алмаза связано с рентгеновской оптикой. В этом смысле алмаз обладает рядом преимуществ: высокой теплопроводностью, прозрачностью в рентгеновском диапазоне и низким коэффициентом термического расширения

Основные направления проводимых исследований связаны с наиболее перспективными областями науки и техники, где использование алмаза вместо традиционных материалов позволит решить ряд проблем принципиального характера. Потенциальных областей применения у алмаза очень много, ограничимся лишь теми, где уже есть конкретные заделы. Так, из высококачественных кристаллов синтетического алмаза, полученных в нашей лаборатории, изготовлены алмазные наковальни, элементы рентгеновской оптики и детекторов ионизирующих излучений. Все эти изделия прошли успешные испытания в ведущих специализированных научных центрах.

Как там в недрах?

В науках о Земле алмаз рассматривается прежде всего как индикатор сверхглубинных геологических процессов (Добрецов и др., 2001). Во все времена происхождение природных алмазов было загадкой. Да и сегодня этот вопрос остается предметом очень бурных дискуссий, особенно на больших специализированных научных форумах.

Одно из важных направлений – применение алмаза для регистрации рентгеновского и гамма-излучений в радиологии и медицине. Здесь алмаз обладает такими достоинствами, как тканеэквивалентность, химическая стабильность, нетоксичность и малый размер детектора

Условия образования алмаза в мантии Земли большинство ученых оценивают следующим образом: давление порядка 50-60 тыс. атм., температура примерно 1000-1400 °С. Поэтому, если на вопрос: «Как там в недрах?», – вы ответите, что очень тесно и очень жарко, то, в принципе, не ошибетесь, хотя и сильно приукрасите существующие там условия.

Если по поводу температур и давления, необходимых для образования алмаза, у большинства специалистов нет существенных разногласий, то относительно состава среды кристаллизации и источника углерода ясности нет. Как говорится в таких случаях – вопрос дискуссионный. Подсказку дает сам природный алмаз. Этот сверхпрочный кристалл является уникальным контейнером, захватившим в процессе роста вещество мантии в виде включений. Минеральные включения в алмазах представлены в основном силикатами (гранат, оливин, пироксен) и сульфидами (пирротин, пентландит). Логично предположить, что алмаз кристаллизовался в силикатных или сульфидных расплавах. А может быть, в карбонатах? Ведь карбонаты тоже иногда встречаются в качестве включений в алмазах.

Начиная с работы академика В.С. Соболева (Соболев, 1960), проблема происхождения алмазов в природе обсуждается вместе с проблемой искусственного получения этого минерала. В 70-х гг. прошлого века, когда в лабораторных условиях уже научились создавать высокое давление и температуру (и, более того, умели получать алмазы, используя в качестве растворителей расплавы железа, никеля и кобальта), экспериментаторы решили помочь геологам разобраться в том, как же алмаз образуется в природе.

Классики в области высоких давлений работали аккуратно и честно. Поставили эксперименты в различных по составу расплавах; параметры – температуру, давление и длительность – выбрали такие же, как и в экспериментах с расплавами металлов, где заведомо получался алмаз. Не забыли положить и графит. Надавили, нагрели, проанализировали – нет алмаза! Повторили – опять нет. Проверили разные среды – снова алмаза нет! А что есть? Есть только метастабильный графит, образованный в области термодинамической стабильности алмаза.

Значит, углерод в этих средах при данных условиях растворяется – сказали классики и были абсолютно правы. Но нужно было сделать и следующий шаг: ответить на вопрос, почему так происходит? Экспериментаторы пришли к выводу, что есть две группы растворителей углерода: алмаз-продуцирующие и… (что делать) графит-продуцирующие. Тех, кто занимался технологическими проблемами синтеза алмаза, такое объяснение вполне устроило. А вот геологов – нет. Почему? Да потому, что алмаз в природе находится в основном в кимберлитах (карбонатно-силикатных породах), да и включения в алмазах, как уже отмечалось, состоят преимущественно из силикатов, оксидов и сульфидов.

«Не будем нервничать, – сказали экспериментаторы, – вот вам модель образования алмаза в природе… из расплава железа и никеля. Ведь сами говорили, что где-то там, в ядре Земли есть расплав металлов… и состав подходит, а главное – алмазы образуются». В общем, огорчились и те и другие, и продолжили заниматься каждый своим делом: одни – синтезировать алмазы, другие – искать их в природе. Говоря современным языком, на том этапе «интеграции» не получилось.

Тем не менее успехи были весьма значительные. Одно только открытие микроалмазов в гранатах и цирконах метаморфических пород Кокчетавского массива чего стоит (Sobolev, Shatsky, 1990). Экспериментаторы тоже не сидели сложа руки. Проблемой синтеза алмаза в неметаллических расплавах заинтересовались в Японии. Появились сообщения о кристаллизации алмаза в расплавах карбонатов при давлении 75 тыс. атм. и температуре около 2000 °С.

«Интересно, – сказали геологи, – но Р-Т -параметры (давление-температура) слишком высоки для природных процессов». К проблеме подключились научные коллективы из Англии, США, России (Черноголовка и Новосибирск), однако каждый пошел своим путем.

Учитывая, что одним из важнейших геологических факторов является время, мы снизили параметры и увеличили продолжительность экспериментов до нескольких часов. Алмаза нет. Еще увеличили длительность – и вот он, алмаз! И температура «всего» 1700 °С. «Температура выше, чем в природе», – сказали геологи. Что делать дальше? Добавили воды и еще увеличили длительность. Процесс кристаллизации алмаза пошел активнее. Да и состав в общем-то подходящий – щелочной карбонат, H 2 O и СО 2 (микровключения подобного состава все чаще и чаще стали находить в природных алмазах). Еще снизили давление и температуру, а время увеличили до 100 часов. И снова – алмаз! При давлении 57 тыс. атм. и температуре всего 1150 °С. Ура! Параметры как природные, и даже ниже, чем в металл-углеродных системах. Это был результат, достойный Nature , даже с учетом всех строгостей самого авторитетного в мире научного журнала (Pal’yanov et al. , 1999).

Об алмазе – самом загадочном минерале на Земле – читайте также в статье чл.-корр. РАН Н. П. Похиленко
(«Наука из первых рук», №4, 2007 г.)

Конечно, в природе все сложнее, чем в лаборатории (Похиленко, 2007). Экспериментальными исследованиями по карбонат-силикатным взаимодействиям нам удалось доказать, что карбонаты могут быть не только средой кристаллизации, но и источником углерода алмаза (Pal’yanov et al. , 2002). В результате в модельных системах удалось создать условия для совместной кристаллизации алмаза и других мантийных минералов, таких как пироп, оливин, пироксен и коэсит (Pal’yanov et al. , 2005).

Наука не стоит на месте. Появляются новые данные о составе микро- и даже нановключений в природных алмазах. В таких включениях были обнаружены не только карбонаты, но также и хлориды и еще масса всякой «экзотики». Возникают новые и новые модели образования алмаза. Нужно детально все проверить и разобраться в механизмах кристаллизации алмаза (Pal’yanov et al. , 2007).

Наша история о том, где растут алмазы подходит к концу, а история применения алмаза в высокотехнологических областях науки и техники только начинается. Да и в геологической науке осталось еще много загадок, связанных с происхождением этих великолепных кристаллов.

Литература

Добрецов Н. Л., Кирдяшкин А. Г., Кирдяшкин А. А. Глубинная геодинамика. Новосибирск: Изд-во СО РАН, филиал «Гео», 2001, 2-е изд., 409 с.

Пальянов Ю. Н., Малиновский И. Ю., Борздов Ю. М., Хохряков А. Ф., Чепуров А. И., Годовиков А. А., Соболев Н. В. Выращивание крупных кристаллов алмаза на беспрессовых аппаратах типа «разрезная сфера» // Докл. АН СССР. 1990. Т. 315. №5. С.1221-1224.

Похиленко Н. П. Алмазный путь длиною в три миллиарда лет. // Наука из первых рук. 2007. № 4 (16). С. 28-39.

Соболев Е. В. . Тверже алмаза. Новосибирск: Наука, 1989. 190 с.

Соболев В. С. Условия образования месторождений алмазов // Геология и геофизика. 1960. № 1. С. 7-22.

Pal’yanov Yu. N., Sokol A. G., Borzdov Yu. M., Khokhryakov A. F., Sobolev N. V. Diamond formation from mantle carbonate fluids // Nature. V. 400. 29 July 1999. P. 417-418

Pal’yanov Yu. N., Sokol A. G., Borzdov Yu. M., Khokhryakov A. F., Sobolev N. V. Diamond formation through carbonate-silicate interaction // Amer. Mineral. 2002. V. 87. №7. P. 1009-1013

Pal’yanov Yu. N., Sokol A. G., Tomilenko A. A., Sobolev N. V. Conditions of diamond formation through carbonate-silicate interaction. Eur. J. Mineralogy. 2005. V. 17. P. 207-214

Palyanov Yu. N., Shatsky V. S., Sobolev N. V., Sokol A. G. The role of mantle ultrapotassic fluids in diamond formation // roc. Nat. Acad. Sci. USA. 2007. V. 104. P. 9122-9127

Shigley J. E., Fritsch E., Koivula J. I., Sobolev N. V., Malinovsky I. Yu., Pal’yanov Yu. N. The gemological properties of Russian gem-quality synthetic yellow diamonds // Gems & Gemology. 1993. V. 29. P. 228-248

Sobolev N. V., Shatsky V. S. Diamond inclusions in garnets from metamorphic rocks // Nature. 1990. V. 343. P. 742-746