Садовые растения        05.05.2019   

Закон сохранения полной кинетической энергии. Закон сохранения и превращение энергии. Формулировка и определение закона сохранения и превращения энергии

1.7. ЗАКОН СОХРАНЕНИЯ МЕХАНИЧЕСКОЙ ЭНЕРГИИ

Формулировка закона сохранения механической энергии. Формулировка в случае наличия диссипативных сил. Графическое представление энергии. Финитное и инфинитное движения. Абсолютно упругий удар. Абсолютно неупругий удар.

Полная механическая энергия системы - энергия механического движения и взаимодействия, т.е. равна сумме кинетической и потенциальной энергий. Закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы полная механическая энергия сохраняется, т.е. не изменяется со временем. Это -фундаментальный закон природы. Он является следствием однородности времени - инвариантности физических законов относительно выбора начала отсчета времени. Все силы в механике принято разделять на консервативные и неконсервативные . Консервативными называются силы, работа которых не зависит от формы траектории (пути) между двумя точками, а зависит только от начального и конечного положений тела относительно другого. Иначе говоря, работа консервативных сил по замкнутой траектории равна нулю. Примером консервативных сил являются сила тяжести, сила упругости и т.д. К ним, прежде всего, относятся диссипативные силы (преобразующие механическую энергию в другие виды энергии), например, сила трения. Если есть изменение, то равна работе диссипативных сил. Финитное – движение точек в ограниченной области пространства. Инфинитное – тело уходит на бесконечность. Абсолютно упругий удар - столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию. законы сохранения импульса и сохранения механической энергии выполняются . Абсолютно неупругий удар - столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое тело. Не выполняется закон сохранения механической энергии: вследствие деформации часть кинетической энергии переходит во внутреннюю энергию тел (разогрев).

Введем понятие полной механической энергии частицы. Приращение кинетической энергии частицы равно элементарной работе результирующей всех сил, действующих на частицу. Если частица находится в потенциальном поле, то на нее действует консервативная сила со стороны этого потенциального поля. Кроме того, на частицу могут действовать и другие силы, имеющие иное происхождение. Назовем их сторонними силами .

Таким образом, результирующая всех сил, действующих на частицу, может быть представлена в виде . Работа всех этих сил идет на приращение кинетической энергии частицы:

Согласно (6.7), работа сил поля равна убыли потенциальной энергии частицы, т. е. . Подставив это выражение в предыдущее и перенеся член влево, получим

Отсюда видно, что работа сторонних сил идет на приращениe величины . Эту величину - сумму кинетичеcкой и потенциальной энергии - называют полной механической энергией частицы в поле :

на конечном перемещении из точки 1 в точку 2

(7 .3)

т.е . приращение полной механической энергии частицы на некотором пути равно алгебраической сумме работ всех сторонних сил , действующих на частицу на том же пути. Если , то полная механическая энергия частицы увеличивается, если же , то уменьшается.

Полная механическая энергия частицы может измениться под действием только сторонних сил. Отсюда непосредственно вытекает закон сохранения полной механической энергии частицы во внешнем поле: если сторонние силы отсутствуют или таковы, что алгебраическая сумма их мощностей равна нулю в течение интересующего нас времени, то полная механическая энергия частицы остается постоянной за это время . Иначе говоря,

(7 .4)

Уже в такой простейшей форме данный закон сохранения позволяет достаточно легко получать ответы на ряд важных вопросов без привлечения уравнений движения, что, как мы знаем, часто сопряжено с проведением громоздких и утомительных расчетов. Именно это обстоятельство и превращает законы сохранения в весьма действенный инструмент исследования.

Проиллюстрируем возможности и преимущества, которые дает применение закона сохранения (7.4), на следующем примере.

Пример. Пусть частица движется в одномерном потенциальном поле U (х. Если сторонние силы отсутствуют, то полная механическая энергия частицы в данном поле, т. е. Е, не меняется в процессе движения, и мы можем просто решить, например, такие вопросы, как:

1. Определить, не решая основного уравнения динамики, v (х) - скорость частицы в зависимости от ее координаты. Для этого достаточно знать, согласно уравнению (7.4) , конкретный вид потенциальной кривой U (х) и значение полной энергии Е (правая часть данного уравнения).

2. Установить область изменения координаты х частицы, в которой она может находиться при заданном значении полной энергии Е. Ясно, что в область, где U > Е, частица попасть не может, поскольку потенциальная энергия U частицы не может превышать ее полную энергию. Отсюда сразу следует, что при (рис. 7.1) частица может двигаться в области

между координатами (совершает колебания) или правее координаты . Перейти же из первой области во вторую (или обратно) частица не может: этому препятствует потенциальный барьер, разделяющий обе эти области. Заметим, что когда частица движется в ограниченной области поля, говорят, что она находится в потенциальной яме, в нашем случае - между .

Иначе ведет себя частица при (рис. 7.1): для нее доступна вся область правее . Если в начальный момент частица находилась в точке , то в дальнейшем она будет двигаться вправо. Определение изменения кинетической энергия частицы в зависимости от ее положения х может послужить полезным самостоятельным упражнением.

До сих пор мы ограничивались рассмотрением поведения одной частицы с энергетической точки зрения. Теперь перейдем к системе частиц. Это может быть любое тело, газ, любой механизм, Солнечная система и т. д.

В общем случае частицы системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. Систему частиц, на которую не действуют никакие посторонние тела или их воздействие пренебрежимо мало, называют замкнутой или изолированной. Понятие замкнутой системы является естественным обобщением понятия изолированной материальной точки и играет важную роль в физике.

Введем понятие потенциальной энергии системы частиц. Рассмотрим замкнутую систему, между частицами которой действуют только центральные силы, т. е. силы, зависящие при данном характере взаимодействия только от расстояния между ними и направленные по прямой, их соединяющей.

Покажем, что в любой системе отсчета работа всех этих сил при переходе системы частиц из одного положения в другое может быть представлена как убыль некоторой функции, зависящей при данном характере взаимодействия только от конфигурации самой системы или от относительного расположения ее частиц. Эту функцию назовем собственной потенциальной энергией системы, в отличие от внешней потенциальной энергии, характеризующей взаимодействие данной системы с другими телами.

Первоначально рассмотрим систему из двух частиц. Вычислим элементарную работу сил, с которыми эти частицы взаимодействуют между собой. Пусть в произвольной системе отсчета в некоторый момент времени положение частиц определяется радиус-векторами и . Если за время dt частицы совершили перемещения и соответственно, то работа сил взаимодействия и равна

Теперь учтем, что, согласно третьему закону Ньютона , поэтому предыдущее выражение можно переписать так:

Введем вектор , характеризующий положение 1-й частицы относительно 2-й. Тогда и после подстановки в выражение для работы получим

.

Сила - центральная, поэтому работа этой силы равна убыли потенциальной энергии взаимодействия данной пары частиц, т. е.

Так как функция зависит только от расстояния между частицами, то ясно, что работа не зависит от выбора системы отсчета.

Теперь рассмотрим систему из трех частиц, так как полученный в этом случае результат легко обобщить и на систему из произвольного числа частиц. Элементарная работа, которую совершают все силы взаимодействия при элементарном перемещении всех частиц, может быть представлена как сумма элементарных работ всех трех пар взаимодействий, т. е.

Но для каждой пары взаимодействий, как было показано , поэтому

где функция есть собственная потенциальная энергия данной системы частиц:

Так как каждое слагаемое этой суммы зависит от расстояния между соответствующими частицами, то очевидно, что собственная потенциальная энергия U данной системы зависит от относительного расположения частиц в один и тот же момент времени, или, другими словами, от конфигурации системы.

Подобные рассуждения справедливы и для системы из любого числа частиц. Поэтому можно утверждать, что каждой конфигурации произвольной системы частиц присуща своя собственная потенциальная энергия U , и работа всех центральных внутренних сил при изменении конфигурации системы равна убыли собственной потенциальной энергии системы, т. е.

(7 .5)

а при конечном перемещении всех частиц системы

(7 .6)

где и -значения потенциальной энергии системы в начальном и конечном состояниях.

Собственная потенциальная энергия системы U - величина неаддитивная, т. е. она не равна в общем случае сумме собственных потенциальных энергий ее частей. Необходимо учесть еще потенциальную энергию взаимодействия отдельных частей системы

,

(7 .7)

где - собственная потенциальная энергия части системы.

Следует также иметь в виду, что собственная потенциальная энергия системы, как и потенциальная энергия взаимодействия каждой пары частиц, определяется с точностью до прибавления произвольной постоянной, которая, впрочем, и здесь совершенно несущественна.

В заключение приведем полезные формулы для расчета собственной потенциальной энергии системы. Прежде всего покажем, что эта энергия может быть представлена как.

(7 .8)

где - потенциальная энергия взаимодействия частицы со всеми остальными частицами системы. Здесь сумма берется по всем частицам системы. Убедимся в справедливости этой формулы сначала для системы из трех частиц. Выше было показано, что собственная потенциальная энергия данной системы Преобразуем эту сумму следующим образом. Представим каждое слагаемое в симметричном виде: , ибо ясно, что . Тогда

Сгруппируем члены с одинаковым первым индексом:

Каждая сумма в круглых скобках представляет собой потенциальную энергию взаимодействия частицы с остальными двумя. Поэтому последнее выражение можно переписать так:

что полностью соответствует формуле (7.8).

Обобщение полученного результата на произвольную систему очевидно, ибо ясно, что подобные рассуждения совершенно не зависят от числа частиц, составляющих систему.

Для системы, взаимодействие между частицами которой носит гравитационный или кулоновский характер, формулу (7.8) можно преобразовать и к другому виду, воспользовавшись понятием потенциала. Заменим в (7.8) потенциальную энергию частицы выражением , где - масса (заряд) частицы, а - потенциал, создаваемый всеми остальными частицами системы в точке нахождения частицы.

где -объемная плотность массы или заряда, -элемент объема. Здесь интегрирование проводится по всему объему, занимаемому массами или зарядами.

Проведем классификацию сил по их свойствам. Известно, что частицы рассматриваемой системы могут взаимодействовать как между собой, так и с телами, не входящими в данную систему. В соответствии с этим силы взаимодействия между частицами системы называют внутренними , а силы, обусловленные действием других тел, не входящих в данную систему, - внешними. В неинерциальной системе отсчета к последним нужно относить и силы инерции.

Кроме того, все силы делят на потенциальные и непотенциальные . Потенциальными называют силы, зависящие при данном характере взаимодействия только от конфигурации механической системы. Работа этих сил, как было показано, равна убыли потенциальной энергии системы. К непотенциальным силам относятся так называемые диссипативные силы - это силы трения и сопротивления, а также энергетические силы, вызывающие увеличение механической энергии системы за счет других видов энергии (например, взрыв артиллерийского снаряда). Важной особенностью данных сил является то, что суммарная работа внутренних диссипативных сил рассматриваемой системы отрицательна, а энергетических сил - положительна, причем в любой системе отсчета. Докажем это для диссипативных сил.

Любая диссипативная сила может быть представлена в виде

(7 . 1 4)

где - скорость данного тела относительно другого тела (или среды), с которым оно взаимодействует; - положительный коэффициент, зависящий в общем случае от скорости . Сила всегда направлена противоположно вектору . В зависимости от выбора системы отсчета работа этой силы может быть как положительной, так и отрицательной. Суммарная же работа всех внутренних диссипативных сил - величина всегда отрицательная . Переходя к доказательству этого, отметим прежде всего, что внутренние диссипативные силы в данной системе будут встречаться попарно, причем в каждой паре, согласно третьему закону Ньютона, они одинаковы по модулю и противоположны по направлению. Найдем элементарную работу произвольной пары диссипативных сил взаимодействия между телами 1 и 2 в системе отсчета, где скорости этих тел в данный момент равны :

Теперь учтем, что - скорость тела 1 относительно тела 2 , а также то, что . Тогда выражение для работы преобразуется так:

Отсюда видно, что работа произвольной пары внутренних диссипативных сил взаимодействия всегда отрицательна, а значит и суммарная работа всех пар внутренних диссипативных сил также всегда отрицательна. Таким образом, действительно,

(7 . 1 5)

Теперь можно сформулировать закон сохранения полной механической энергии системы частиц. Выше было показано, что приращение кинетической энергии системы равно работе, которую совершают все силы, действующие на все частицы системы. Разделив эти силы на внешние и внутренние, а внутренние, в свою очередь,- на потенциальные и непотенциальные, запишем предыдущее утверждение так:

Теперь учтем, что работа внутренних потенциальных сил равна убыли собственной потенциальной энергии системы, т.е.

Тогда предыдущее выражение примет вид

Очевидно, энергия Е зависит от скоростей частицы системы, характера взаимодействия между ними и конфигурации системы. Кроме того, энергия Е, как и потенциальная энергия U , определяется с точностью до прибавления несущественной произвольной постоянной и является величиной неаддитивной , т. е. энергия Е системы не равна в общем случае сумме энергий ее отдельных частей. В соответствии c (7.7)

(7 . 1 8)

где - механическая энергия части системы, - потенциальная энергия взаимодействия ее отдельных частей.

Вернемся к формуле (7.16). Перепишем ее с учетом (7.17) в виде

Энергетические характеристики движения вводятся на основе понятия механической работы или работы силы.

Если на тело действует сила и тело под действием этой силы перемещается, то говорят, что сила совершает работу.

Механическая работа – это скалярная величина, равная произведению модуля силы, действующей на тело, на модуль перемещения и на косинус угла между вектором силы и вектором перемещения (или скорости).

Работа является скалярной величиной. Она может быть как положительна (0° ≤ α < 90°), так и отрицательна (90° < α ≤ 180°). При α = 90° работа, совершаемая силой, равна нулю.

В системе СИ работа измеряется в джоулях (Дж) . Джоуль равен работе, совершаемой силой в 1 Н на перемещении 1 м в направлении действия силы.

Работа силы, совершаемая в единицу времени, называется мощностью .

Мощность N физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа :

N=A/t

В Международной системе (СИ) единица мощности называется ватт (Вт) . Ватт равен мощности силы, совершающей работу в 1 Дж за время 1 с.

Внесистемная единица мощности 1 л.с.=735 Вт

Связь между мощностью и скоростью при равномерном движении :

N=A/t так как A=FScosα тогда N=(FScosα)/t, но S/t = v следовательно

N= F v cos α

В технике используются единицы работы и мощности:

1 Вт·с = 1 Дж; 1Вт·ч = 3,6·10 3 Дж; 1кВт·ч = 3,6·10 6 Дж

Если тело способно совершить работу, то говорят, что оно обладает энергией.

Механическая энергия тела – это скалярная величина, равная максимальной работе, которая может быть совершена в данных условиях.

Обозначается Е Единица энергии в СИ

Механическая работа есть мера изменения энергии в различных процессах А = ΔЕ.

Различают два вида механической энергии – кинетическая Ек и потенциальная Е p энергия.

Полная механическая энергия тела равна сумме его кинетической и потенциальной энергий

Е = Ек + Е p

Кинетическая энергия – это энергия тела, обусловленная его движением.

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела :

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

Если тело движется со скоростью , то для его полной остановки необходимо совершить работу

Наряду с кинетической энергией или энергией движения в физике важную роль играет понятиепотенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия энергия тела, обусловленная взаимным расположением взаимодействующих между собой тел или частей одного тела.

Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения тела и определяется только начальным и конечным положениями . Такие силы называются консервативными . Работа консервативных сил на замкнутой траектории равна нулю .

Свойством консервативности обладают сила тяжести и сила упругости . Для этих сил можно ввести понятие потенциальной энергии.

П отенциальная энергия тела в поле силы тяжести (потенциальная энергия тела, поднятого над землёй):

Ep = mgh

Она равна работе, которую совершает сила тяжести при опускании тела на нулевой уровень.

Понятие потенциальной энергии можно ввести и для упругой силы . Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x, или сначала удлинить ее на 2x, а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях упругая сила совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A, взятой с противоположным знаком:

где k – жесткость пружины.

Растянутая (или сжатая) пружина способна привести в движение прикрепленное к ней тело, то есть сообщить этому телу кинетическую энергию. Следовательно, такая пружина обладает запасом энергии. Потенциальной энергией пружины (или любого упруго деформированного тела) называют величину

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x1, тогда при переходе в новое состояние с удлинением x2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Потенциальная энергия при упругой деформации – это энергия взаимодействия отдельных частей тела между собой силами упругости.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только силами тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

A = –(Ep2 – Ep1).

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно Ek2 – Ek1 = –(Ep2 – Ep1) или Ek1 + Ep1 = Ek2 + Ep2.

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается неизменной.

Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона.

Сумму E = Ek + Ep называют полной механической энергией .

Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию, и наоборот, или переход энергии от одного тела к другому.

Е = Ек + Е p = const

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

В начале этой главы мы говори­ли, что энергия, как и импульс, сохраняется. Однако когда мы рас­сматривали кинетическую и потен­циальную энергии, об их сохранении ничего не говорилось. В чем же состоит закон сохранения энергии?

Рассмотрим, как изменяется энер­гия тел, взаимодействующих только друг с другом. Такие системы, как мы знаем, называются замкнутыми. Такая система может обладать и кинетической и потенциальной энер­гией. Кинетической - потому, что тела системы могут двигаться, по­тенциальной - потому, что тела сис­темы взаимодействуют друг с другом. И та и другая энергия системы может изменяться с течением вре­мени.

Обозначим через E р1 потенциаль­ную энергию системы в какой-то момент времени, а через E k 1 общую кинетическую энергию системы тел в тот же момент времени. Потен­циальную и кинетическую энергии этих же тел в какой-нибудь другой момент времени обозначим соответ­ственно через Е Р2 и E k 2

В предыдущих параграфах мы установили, что, когда тела взаимо­действуют друг с другом силами тяжести или упругости, совершенная этими силами работа равна взятому с противоположным знаком изме­нению потенциальной энергии тел системы:


С другой стороны, согласно тео­реме о кинетической энергии, эта же работа равна изменению кинети­ческой энергии:

A = E k2 – E k1 (2)

Энергия превращается из одного вида в другой.

В левых частях равенств (1) и (2) стоит одна и та же величина - работа сил взаимо­действия тел системы. Значит, и правые части равны друг другу:

E k2 - E k 1 = - (Ep 2 - Ep 1). (3)

Из этого равенства видно, что кинетическая и потенциальная энер­гия в результате взаимодействия и движения тел изменяется так, что увеличение одной из них равно уменьшению другой. На сколько одна из них возрастает, на столько другая уменьшается. Дело выглядит так, как будто бы происходит превращение одного вида энергии в другой. В этом состоит важная особенность величины, называемой энергией: есть различные формы энергии, и они могут превращаться одна в другую. Но ни об одной из них нельзя сказать, что она сохраняется.

Полная механическая энергия. Закон сохранения полной механи­ческой энергии.

Если из двух видов энергии один уменьшается ровно на столько, на сколько увеличивается другой, то это значит, что сумма энергий обоих видов остается неиз­менной. Это видно из формулы (3), которую можно переписать так:

E k 2 + Ep 2 = E k 1 + Ep 1 . (4)

В левой части равенства мы видим сумму кинетической и потен­циальной энергий системы тел в ка­кой-то момент времени, в правой - ту же сумму в другой момент времени. Эта сумма называется полной механической энергией систе­мы. Для системы тел, в которой действует сила тяжести, например для системы «Земля - падающее тело» или «Земля - тело, брошенное вверх», она равна mgh+mv 2 /2 .



Если между телами системы действует сила упругости, то полная механи­ческая энергия запишется так:

kx 2 /2 + mv 2 /2

Равенство (4) означает, что пол­ная механическая энергия замкнутой системы тел остается неизменной, сохраняется. В этом состоит закон сохранения энергии.

Полная механическая энергия замкнутой системы тел, взаимодей­ствующих силами тяготения или си­лами упругости, остается неизменной при любых движениях тел системы.

Превращения энергии и работа.

Тот факт, что одна и та же работа приводит к увеличению кинетической или к такому же уменьшению по­тенциальной энергии, означает, что работа равна энергии, превратив­шейся из одного вида в другой. Мы видели, например, что поло­жительная работа силы равна умень­шению потенциальной энергии. Но, согласно закону сохранения полной энергии, потенциальная энергия не может уменьшаться, не превратив­шись в энергию кинетическую!

Закон сохранения энергии, как и закон сохранения импульса, можно использовать для решения многих механических задач. Этим способом многие задачи решаются более прос­то, чем при прямом применении законов движения.

1. Что такое полная механическая энер­гия?

2. В чем состоит закон сохранения ме­ханической энергии?

3. Выполняется ли закон сохранения ме­ханической энергии, если действуют одно­временно и сила тяжести и упругая сила?

4. Как влияет на энергию системы тел действие внешней силы? Сохраняется ли в этом случае полная механическая энергия? 5. Спутник вращается по орбите вокруг Земли. С помощью ракетного двигателя его перевели на другую орбиту. Измени­лась ли его механическая энергия?

Закон сохранения механической энергии.

Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна разности потенциальной энергии:

По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел:

Следовательно:

Или . (5.16)

Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

Сумма E = E k + E p есть полная механическая энергия. Получили закон сохранения полной механической энергии :

Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

Сила трения не является консервативной. Работа силы трения зависит от длины пути.

Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.

Закон сохранения механической энергии и закон сохранения импульса позволяют находить решения механических задач в тех случаях, когда действующие силы неизвестны. Примером такого рода задач является ударное взаимодействие тел.

Ударом (или столкновением) принято называть кратковременное взаимодействие тел, в результате которого их скорости испытывают значительные изменения. Во время столкновения тел между ними действуют кратковременные ударные силы, величина которых, как правило, неизвестна. Поэтому нельзя рассматривать ударное взаимодействие непосредственно с помощью законов Ньютона. Применение законов сохранения энергии и импульса во многих случаях позволяет исключить из рассмотрения сам процесс столкновения и получить связь между скоростями тел до и после столкновения, минуя все промежуточные значения этих величин.

В механике часто используются две модели ударного взаимодействия – абсолютно упругий и абсолютно неупругий удары .

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

Статика. Равнодействующая сила. Момент силы. Условия равновесия материальной точки и твердого тела.Границы применимости классической механики.

При имеющейся замкнутой механической системе тела взаимодействуют посредством сил тяготения и упругости, тогда их работа равняется изменению потенциальной энергии тел с противоположным знаком:

A = – (E р 2 – E р 1) .

Следуя из теоремы о кинетической энергии, формула работы примет вид

A = E k 2 - E k 1 .

Отсюда следует, что

E k 2 - E k 1 = – (E р 2 – E р 1) или E k 1 + E p 1 = E k 2 + E p 2 .

Определение 1

Сумма кинетической и потенциальной энергии тел , составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной .

Данное утверждение выражает закон сохранения энергии в замкнутой системе и в механических процессах, являющийся следствием законов Ньютона.

Определение 2

Закон сохранения энергии выполняется при взаимодействии сил с потенциальными энергиями в замкнутой системе.

Пример N

Примером применения такого закона служит нахождение минимальной прочности легкой нерастяжимости нити, которая удерживает тесло с массой m , вращая его вертикально относительно плоскости (задачи Гюйгенса). Подробное решение изображено на рисунке 1 . 20 . 1 .

Рисунок 1 . 20 . 1 . К задаче Гюйгенса, где F → принимается за силу натяжения нити в нижней точке траектории.

Запись закона сохранения полной энергии в верхней и нижней точках принимает вид

m v 1 2 2 = m v 2 2 2 + m g 2 l .

F → располагается перпендикулярно скорости тела, отсюда следует вывод, что она не совершает работу.

Если скорость вращения минимальная, то натяжение нити верхней точке равняется нулю, значит, центростремительное ускорение может быть сообщено только при помощи силы тяжести. Тогда

m v 2 2 l = m g .

Исходя из соотношений, получаем

v 1 m i n 2 = 5 g l .

Создание центростремительного ускорения производится силами F → и m g → с противоположными направлениями относительно друг друга. Тогда формула запишется:

m v 1 2 2 = F - m g .

Можно сделать вывод, что при минимальной скорости тела в верхней точке натяжение нити будет равняться по модулю значению F = 6 m g .

Очевидно, что прочность нити обязана превышать значение.

С помощью закона сохранения энергии посредством формулы можно получить связь между координатами и скоростями тела в двух разных точках траектории, не используя анализ закона движения тела во всех промежуточных точках. Данный закон позволяет заметно упрощать решение задач.

Реальные условия для движущихся тел предполагают действия сил тяготения, упругости, трения и сопротивления данной среды. Работа силы трения зависит от длины пути, поэтому она не является консервативной.

Определение 3

Между телами, составляющими замкнутую систему, действуют силы трения, тогда механическая энергия не сохраняется, ее часть переходит во внутреннюю. Любые физические взаимодействия не провоцируют возникновение или исчезновение энергии. Она переходит из одной формы в другую. Данный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

Следствием является утверждение о невозможности создания вечного двигателя (perpetuum mobile) – машины, которая совершала бы работу и не расходовала энергию.

Рисунок 1 . 20 . 2 . Проект вечного двигателя. Почему данная машина не будет работать?

Существует большое количество таких проектов. Они не имеют право на существование, так как при расчетах отчетливо видны одни ошибки конструкций всего прибора, другие замаскированы. Попытки реализовать такую машину тщетны, так как они противоречат закону сохранения и превращения энергии, поэтому нахождение формулы не даст результатов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter